The Call-by-Value λ-Calculus from a Linear Logic Perspective

Giulio Guerrieri
LIS, Aix-Marseille Université (Marseille, France)

Workshop in honour of Thomas Ehrhard's 60 years
Paris, 30 September 2022

Outline

(1) What is Call-by-Value?
(2) What is Wrong with Plotkin's Call-by-Value?
(3) A Linear Logic Perspective to Call-by-Value
(4) Restoring Call-by-Value thanks to Linear Logic
(5) Conclusions

Outline

(1) What is Call-by-Value?
(2) What is Wrong with Plotkin's Call-by-Value?
(3) A Linear Logic Perspective to Call-by-Value
(4) Restoring Call-by-Value thanks to Linear Logic
(5) Conclusions

A specific λ-calculus among a plethora of λ-calculi

The λ-calculus is the model of computation underlying

- functional programming languages (Haskell, OCaml, ...)
- proof assistants (Coq, Isabelle/Hol, ...).

Actually, there are many λ-calculi, depending on

- the evaluation mechanism (e.g., call-by-name, call-by-value, call-by-need);
- computational feature the calculus aims to model (e.g., pure, non-deterministic);
- the type system (e.g. untyped, simply typed, second order).

In this talk: pure untyped call-by-value λ-calculus (mainly).

A specific λ-calculus among a plethora of λ-calculi

The λ-calculus is the model of computation underlying

- functional programming languages (Haskell, OCaml, ...)
- proof assistants (Coq, Isabelle/Hol, ...).

Actually, there are many λ-calculi, depending on

- the evaluation mechanism (e.g., call-by-name, call-by-value, call-by-need);
- computational feature the calculus aims to model (e.g., pure, non-deterministic);
- the type system (e.g. untyped, simply typed, second order).

In this talk: pure untyped call-by-value λ-calculus (mainly).

A specific λ-calculus among a plethora of λ-calculi

The λ-calculus is the model of computation underlying

- functional programming languages (Haskell, OCaml, ...)
- proof assistants (Coq, Isabelle/Hol, ...).

Actually, there are many λ-calculi, depending on

- the evaluation mechanism (e.g., call-by-name, call-by-value, call-by-need);
- computational feature the calculus aims to model (e.g., pure, non-deterministic);
- the type system (e.g. untyped, simply typed, second order).

In this talk: pure untyped call-by-value λ-calculus (mainly).

Call-by-Name vs. Call-by-Value (for dummies)

- Call-by-Name (CbN): pass the argument to the calling function before evaluating it.
- Call-by-Value (CbV): pass the argument to the calling function after evaluating it.

Call-by-Name vs. Call-by-Value (for dummies)

- Call-by-Name (CbN): pass the argument to the calling function before evaluating it.
- Call-by-Value (CbV): pass the argument to the calling function after evaluating it.

Call-by-Name vs. Call-by-Value (for dummies)

- Call-by-Name (CbN): pass the argument to the calling function before evaluating it.
- Call-by-Value (CbV): pass the argument to the calling function after evaluating it.

Summing up, CbV is eager, that is,
(1) CbV is smarter than CbN when the argument must be duplicated;
(c) CbV is sillier than CbN when the argument must be discarded.

Plotkin's Call-by-Value λ-calculus [Plo75]

Terms: $s, t, u::=v \mid t u$

CbV reduction: $(\lambda x . t) v \rightarrow_{\beta_{v}} t\{v / x\}$

Values: $v::=x \mid \lambda x . t$
(restriction to- $\mathrm{CbN}-\beta$-rule)

Why? Closer to real implementation of most programming languages \& proof assistants.
CbN and $\mathrm{CbV} \lambda$-calculi have different operational and denotational semantics
\rightsquigarrow in general, it is impossible to derive a property for CbV from CbN , or vice versa.
Examples, with $I:=\lambda z . z$ (identity) and $\delta:=\lambda z . z z$ (duplicator):
(ㅇ) $(\lambda y . I)(\delta \delta) \beta$-normalizes but β_{v}-diverges

$$
(\lambda y . I)(\delta \delta) \rightarrow_{\beta} I \quad(\lambda y . I)(\delta \delta) \rightarrow_{\beta_{v}}(\lambda y . I)(\delta \delta) \rightarrow_{\beta}
$$

(2) $(\lambda x . \delta)(x x) \delta$ is β_{v}-normal but β-divergent: $(\lambda x . \delta)(x x) \delta \rightarrow_{\beta} \delta \delta \rightarrow_{\beta} \delta \delta \rightarrow_{\beta}$

Plotkin's Call-by-Value λ-calculus [Plo75]

Terms: $s, t, u::=v \mid t u$ CbV reduction: $(\lambda x . t) v \rightarrow_{\beta_{v}} t\{v / x\} \quad$ (restriction to- $\mathrm{CbN}-\beta$-rule)

Why? Closer to real implementation of most programming languages \& proof assistants.
CbN and $\mathrm{CbV} \lambda$-calculi have different operational and denotational semantics
\rightsquigarrow in general, it is impossible to derive a property for CbV from CbN , or vice versa
Examples, with $I:=\lambda z . z$ (identity) and $\delta:=\lambda z . z z$ (duplicator):
(1) $(\lambda y . I)(\delta \delta) \beta$-normalizes but β_{v}-diverges

$$
(\lambda y . I)(\delta \delta) \rightarrow_{\beta} I \quad(\lambda y . I)(\delta \delta) \rightarrow_{\beta_{v}}(\lambda y . I)(\delta \delta) \rightarrow_{,}
$$

(2) $(\lambda x . \delta)(x x) \delta$ is β_{v}-normal but β-divergent: $(\lambda x . \delta)(x x) \delta \rightarrow_{\beta} \delta \delta \rightarrow_{\beta} \delta \delta \rightarrow_{\beta}$

Plotkin's Call-by-Value λ-calculus [Plo75]

$$
\text { Terms: } s, t, u::=v \mid t u
$$

$$
\text { Values: } v::=x \mid \lambda x . t
$$

CbV reduction: $(\lambda x . t) v \rightarrow_{\beta_{v}} t\{v / x\} \quad$ (restriction to- $\mathrm{CbN}-\beta$-rule)

Why? Closer to real implementation of most programming languages \& proof assistants.
CbN and $\mathrm{CbV} \lambda$-calculi have different operational and denotational semantics \rightsquigarrow in general, it is impossible to derive a property for CbV from CbN, or vice versa.

Examples, with $I:=\lambda z . z$ (identity) and $\delta:=\lambda z . z z$ (duplicator):
(1) $(\lambda y . I)(\delta \delta) \beta$-normalizes but β_{v}-diverges
© $(\lambda x . \delta)(x x) \delta$ is β_{v}-normal but β-divergent: $(\lambda x . \delta)(x x) \delta \rightarrow_{\beta} \delta \delta \rightarrow_{\beta} \delta \delta \rightarrow$

Plotkin's Call-by-Value λ-calculus [Plo75]

$$
\text { Terms: } s, t, u::=v \mid t u \quad \text { Values: } v::=x \mid \lambda x . t
$$

$$
\mathrm{CbV} \text { reduction: }(\lambda x . t) v \rightarrow_{\beta_{v}} t\{v / x\} \quad \text { (restriction to-CbN— } \beta \text {-rule) }
$$

Why? Closer to real implementation of most programming languages \& proof assistants.
CbN and $\mathrm{CbV} \lambda$-calculi have different operational and denotational semantics \rightsquigarrow in general, it is impossible to derive a property for CbV from CbN , or vice versa.

Examples, with $I:=\lambda z . z$ (identity) and $\delta:=\lambda z . z z$ (duplicator):
(1) $(\lambda y . I)(\delta \delta) \beta$-normalizes but β_{v}-diverges

$$
(\lambda y . I)(\delta \delta) \rightarrow_{\beta} I \quad(\lambda y . I)(\delta \delta) \rightarrow_{\beta_{v}}(\lambda y . I)(\delta \delta) \rightarrow_{\beta_{v}} \ldots
$$

(2) $(\lambda x . \delta)(x x) \delta$ is β_{v}-normal but β-divergent: $(\lambda x . \delta)(x x) \delta \rightarrow_{\beta} \delta \delta \rightarrow_{\beta} \delta \delta \rightarrow_{\beta} \ldots$

Outline

(1) What is Call-by-Value?
(2) What is Wrong with Plotkin's Call-by-Value?
(3) A Linear Logic Perspective to Call-by-Value

4 Restoring Call-by-Value thanks to Linear Logic
(5) Conclusions

A symptom that Plotkin's CbV is sick: Contextual equivalence
Def. Terms t, t^{\prime} are contextually equivalent if they are observably indistinguishable, i.e., for every context $\mathrm{C}, \mathrm{C}\langle t\rangle \rightarrow_{\beta_{v}}^{*} v$ (for some value v) iff $\mathrm{C}\left\langle t^{\prime}\right\rangle \rightarrow_{\beta_{v}}^{*} v^{\prime}$ (for some value v^{\prime})

Consider the terms (with $\delta:=\lambda z . z z$ as usual) $\delta_{1}=(\lambda \times \delta)(x \times) \delta \quad \delta_{3}:=\delta((\lambda \times . \delta)(x x))$
δ_{1} and δ_{3} are β_{v}-normal but contextually equivalent to $\delta \delta$ (which is β_{v}-divergent)!
The "energy" (i.e. divergence) in δ_{1} and δ_{3} is only potential, in $\delta \delta$ is kinetic!

A symptom that Plotkin's CbV is sick: Contextual equivalence
Def. Terms t, t^{\prime} are contextually equivalent if they are observably indistinguishable, i.e., for every context $\mathrm{C}, \mathrm{C}\langle t\rangle \rightarrow_{\beta_{v}}^{*} v$ (for some value v) iff $\mathrm{C}\left\langle t^{\prime}\right\rangle \rightarrow_{\beta_{v}}^{*} v^{\prime}$ (for some value v^{\prime})

Consider the terms (with $\delta:=\lambda z . z z$ as usual)

$$
\delta_{1}:=(\lambda x . \delta)(x x) \delta \quad \delta_{3}:=\delta((\lambda x . \delta)(x x))
$$

δ_{1} and δ_{3} are β_{v}-normal but contextually equivalent to $\delta \delta$ (which is β_{v}-divergent)!
The "energy" (i.e. divergence) in δ_{1} and δ_{3} is only potential, in $\delta \delta$ is kinetic!

Why are δ_{1} and δ_{3} stuck? Why cannot we transform their potential energy in kinetic?
It seems that in Plotkin's CbV λ-calculus something is missing.

A symptom that Plotkin's CbV is sick: Contextual equivalence
Def. Terms t, t^{\prime} are contextually equivalent if they are observably indistinguishable, i.e., for every context $\mathrm{C}, \mathrm{C}\langle t\rangle \rightarrow_{\beta_{v}}^{*} v$ (for some value v) iff $\mathrm{C}\left\langle t^{\prime}\right\rangle \rightarrow_{\beta_{v}}^{*} v^{\prime}$ (for some value v^{\prime})

Consider the terms (with $\delta:=\lambda z . z z$ as usual)

$$
\delta_{1}:=(\lambda x . \delta)(x x) \delta \quad \delta_{3}:=\delta((\lambda x . \delta)(x x))
$$

δ_{1} and δ_{3} are β_{v}-normal but contextually equivalent to $\delta \delta$ (which is β_{v}-divergent)!
The "energy" (i.e. divergence) in δ_{1} and δ_{3} is only potential, in $\delta \delta$ is kinetic!

Why are δ_{1} and δ_{3} stuck? Why cannot we transform their potential energy in kinetic? It seems that in Plotkin's CbV λ-calculus something is missing...

In a calculus X , a term t is solvable if there is a head context H such that $\mathrm{H}\langle t\rangle \rightarrow_{\mathrm{x}}^{*} I$.

In the CbN λ-calculus, solvability is well-studied and has an elegant theory.
(3) Internal operational characterization: t is CbN -solvable iff t is head β-normalizing
(3) Every β-normalizing term is CbN -solvable, but the converse fails (e.g. Y).
(3) The λ-theory that equates all CbN -unsolvable terms is consistent.

- CbN-unsolvable terms represent undefined partial recursive functions.

Moral: CbN -solvable terms are all and only the meaningful terms in CbN . $\rightsquigarrow \mathrm{CbN}$-unsolvable terms are meaningless, and "heavily" divergent.

In a calculus X , a term t is solvable if there is a head context H such that $\mathrm{H}\langle t\rangle \rightarrow_{\mathrm{x}}^{*} I$.
In the $\mathrm{CbN} \lambda$-calculus, solvability is well-studied and has an elegant theory.
(1) Internal operational characterization: t is CbN -solvable iff t is head β-normalizing.
(3 Every β-normalizing term is CbN -solvable, but the converse fails (e.g. Y).

- The λ-theory that equates all CbN -unsolvable terms is consistent.
- CbN -unsolvable terms represent undefined partial recursive functions.

Moral: CbN -solvable terms are all and only the meaningful terms in CbN . CbN -unsolvable terms are meaningless, and "heavily" divergent.

In a calculus X , a term t is solvable if there is a head context H such that $\mathrm{H}\langle t\rangle \rightarrow_{\mathrm{x}}^{*} I$.
In the $\mathrm{CbN} \lambda$-calculus, solvability is well-studied and has an elegant theory.
(1) Internal operational characterization: t is CbN -solvable iff t is head β-normalizing.
(3 Every β-normalizing term is CbN -solvable, but the converse fails (e.g. Y).
(0) The λ-theory that equates all CbN -unsolvable terms is consistent.

- CbN -unsolvable terms represent undefined partial recursive functions.

Moral: CbN-solvable terms are all and only the meaningful terms in CbN. $\rightsquigarrow \mathrm{CbN}$-unsolvable terms are meaningless, and "heavily" divergent.

In CbV, all these results are false! In particular,
(1) There is no internal operational characterization of CbV-solvability.
(3) The set of CbV -solvable terms does not include the set of β_{v}-normalizing ones.

$$
\delta_{1}:=(\lambda x . \delta)(x x) \delta \quad \delta_{3}:=\delta((\lambda x . \delta)(x x))
$$

δ_{1} and δ_{3} are β_{v}-normal but CbV -unsolvable ($\delta \delta$ is CbV -unsolvable too)!

Moral: If we stick to the idea CbV-solvable $=$ meaningful in CbV , we have two options:
(0) We change the notion of CbV-solvability (i.e., we change the semantics of CbV);
© We change the notion of reduction in Plotkin's CbV (i.e., we change its syntax),

In CbV, all these results are false! In particular,
(1) There is no internal operational characterization of CbV-solvability.
(3) The set of CbV -solvable terms does not include the set of β_{v}-normalizing ones.

$$
\delta_{1}:=(\lambda x . \delta)(x x) \delta \quad \delta_{3}:=\delta((\lambda x . \delta)(x x))
$$

δ_{1} and δ_{3} are β_{v}-normal but CbV -unsolvable ($\delta \delta$ is CbV -unsolvable too)!
β_{v}-normalizing

Moral: If we stick to the idea CbV-solvable $=$ meaningful in CbV , we have two options:
(3) We change the notion of CbV-solvability (i.e., we change the semantics of CbV);
(3) We change the notion of reduction in Plotkin's CbV (i.e., we change its syntax)

In CbV, all these results are false! In particular,
(1) There is no internal operational characterization of CbV-solvability.
(c) The set of CbV -solvable terms does not include the set of β_{v}-normalizing ones.

$$
\delta_{1}:=(\lambda x . \delta)(x x) \delta \quad \delta_{3}:=\delta((\lambda x . \delta)(x x))
$$

δ_{1} and δ_{3} are β_{v}-normal but CbV -unsolvable ($\delta \delta$ is CbV -unsolvable too)!

Moral: If we stick to the idea CbV-solvable $=$ meaningful in CbV, we have two options:
(1) We change the notion of CbV-solvability (i.e., we change the semantics of CbV);
(2) We change the notion of reduction in Plotkin's CbV (i.e., we change its syntax).

A third symptom that Plotkin's CbV is sick: denotational semantics. (1 of 2)
[Ehr12] defined a non-idempotent intersection type system for Plotkin's CbV λ-calculus. Linear types $L::=M \multimap N \quad$ Multi types $M, N::=\left[L_{1}, \ldots, L_{n}\right] n \geq 0$ Idea: $\left[L, L^{\prime}, L^{\prime}\right] \approx L \wedge L^{\prime} \wedge L^{\prime} \neq L \wedge L^{\prime}$ (commutative, associative, non-idempotent \wedge). Idea: A term t : $\left[L, L^{\prime}, L^{\prime}\right]$ can be used once as a data of type L, twice as a data of type L^{\prime}. Rmk: The constructor for multi types (rule !) can be used only by values!

A third symptom that Plotkin's CbV is sick: denotational semantics. (1 of 2)
[Ehr12] defined a non-idempotent intersection type system for Plotkin's CbV λ-calculus.

$$
\text { Linear types } L::=M \multimap N \quad \text { Multi types } M, N::=\left[L_{1}, \ldots, L_{n}\right] n \geq 0
$$

Idea: $\left[L, L^{\prime}, L^{\prime}\right] \approx L \wedge L^{\prime} \wedge L^{\prime} \neq L \wedge L^{\prime}($ commutative, associative, non-idempotent $\wedge)$.
$\overline{x:[L] \vdash x: L}$ ax $\frac{\Gamma, x: M \vdash t: N}{\Gamma \vdash \lambda x \cdot t: M \multimap N} \lambda \quad \frac{\Gamma_{\mathbf{1}} \vdash v: L_{1} \quad n \geq 0 \quad \Gamma_{n} \vdash v: L_{n}}{\Gamma \vdash v:\left[L_{\mathbf{1}}, \ldots, L_{n}\right]}!\frac{\Gamma \vdash t:[M \multimap N] \Delta \vdash s: M}{\Gamma \vdash t s: N} @$ Idea: A term $t:\left[L, L^{\prime}, L^{\prime}\right]$ can be used once as a data of type L, twice as a data of type L^{\prime}.

Rmk: The constructor for multi types (rule !) can be used only by values!

A third symptom that Plotkin's CbV is sick: denotational semantics. (2 of 2)
Non-idempotent intersection types define a denotational model: relational semantics

$$
\llbracket t \rrbracket_{\vec{x}}=\{(\Gamma, M) \mid \Gamma \vdash t: M \text { is derivable }\}
$$

Theorem (Invariance, [Ehr12])
 If $t \rightarrow \beta_{v} u$ then $\llbracket t \rrbracket_{\bar{x}}=\llbracket u \rrbracket_{\bar{x}}$.

The converse (completeness) fail!

$$
\left.\llbracket \delta_{1} \rrbracket=\emptyset=\llbracket \delta_{3} \rrbracket \quad \text { (and } \llbracket \delta \delta \rrbracket=\emptyset \text { too! }\right)
$$

but δ_{1} and δ_{3} are β_{v}-normal, while $\delta \delta$ is β_{v}-divergent!

Rmk: Not only in relational semantics but also in other denotational models of CbV!

A third symptom that Plotkin's CbV is sick: denotational semantics. (2 of 2)
Non-idempotent intersection types define a denotational model: relational semantics

$$
\llbracket t \rrbracket_{\bar{x}}=\{(\Gamma, M) \mid \Gamma \vdash t: M \text { is derivable }\}
$$

Theorem (Invariance, [Ehr12])
If $t \rightarrow \beta_{v} u$ then $\llbracket t \rrbracket_{\bar{x}}=\llbracket u \rrbracket_{\bar{x}}$.

Theorem (Correctness, [Ehr12])

If $\llbracket t \rrbracket_{\mathbb{x}} \neq \emptyset$ then t is normalizing for "weak" β_{v}-reduction (not reducing under λ 's).
The converse (completeness) fail!

$$
\left.\llbracket \delta_{1} \rrbracket=\emptyset=\llbracket \delta_{3} \rrbracket \quad \text { (and } \llbracket \delta \delta \rrbracket=\emptyset \text { too! }\right)
$$

but δ_{1} and δ_{3} are β_{v}-normal, while $\delta \delta$ is β_{v}-divergent!
Rmk: Not only in relational semantics but also in other denotational models of CbV!

A third symptom that Plotkin's CbV is sick: denotational semantics. (2 of 2)
Non-idempotent intersection types define a denotational model: relational semantics

$$
\llbracket t \rrbracket_{\bar{x}}=\{(\Gamma, M) \mid \Gamma \vdash t: M \text { is derivable }\}
$$

Theorem (Invariance, [Ehr12])

If $t \rightarrow \beta_{v} u$ then $\llbracket t \rrbracket_{\bar{x}}=\llbracket u \rrbracket_{\bar{x}}$.

Theorem (Correctness, [Ehr12])

If $\llbracket t \rrbracket_{\mathbb{x}} \neq \emptyset$ then t is normalizing for "weak" β_{v}-reduction (not reducing under λ 's).
The converse (completeness) fail!

$$
\left.\llbracket \delta_{1} \rrbracket=\emptyset=\llbracket \delta_{3} \rrbracket \quad \text { (and } \llbracket \delta \delta \rrbracket=\emptyset \text { too! }\right)
$$

but δ_{1} and δ_{3} are β_{v}-normal, while $\delta \delta$ is β_{v}-divergent!
Rmk: Not only in relational semantics but also in other denotational models of CbV!

Summing up: a mismatch between syntax and semantics

In Plotkin's CbV λ-calculus there is a mismatch between syntax and semantics.
There are terms, such as

$$
\delta_{1}:=(\lambda x . \delta)(x x) \delta \quad \delta_{3}:=\delta((\lambda x . \delta)(x x))
$$

that are β_{v}-normal but their semantics is the same as $\delta \delta$, which is β_{v}-divergent!

- semantics: context equivalence, solvability, denotational models, ..

Somehow, in Plotkin's CbV λ-calculus, β_{ν}-reduction is "not enough"

- Can we extend β_{v} so that δ_{1} and δ_{3} are divergent?
- But we want to keep a CbV discipline:
($\lambda \times . I)(\delta \delta)$ is β_{v}-divergent (but β-normalizing)

Idea: Let us see what happens in CbV from a proof-theoretic viewpoint (Curry-Howard)

Summing up: a mismatch between syntax and semantics

In Plotkin's CbV λ-calculus there is a mismatch between syntax and semantics.
There are terms, such as

$$
\delta_{1}:=(\lambda x . \delta)(x x) \delta \quad \delta_{3}:=\delta((\lambda x . \delta)(x x))
$$

that are β_{v}-normal but their semantics is the same as $\delta \delta$, which is β_{v}-divergent!

- semantics: context equivalence, solvability, denotational models, ...

Somehow, in Plotkin's CbV λ-calculus, β_{ν}-reduction is "not enough".

- Can we extend β_{v} so that δ_{1} and δ_{3} are divergent?
- But we want to keep a CbV discipline:

$$
(\lambda x . I)(\delta \delta) \text { is } \beta_{v} \text {-divergent (but } \beta \text {-normalizing) }
$$

> Idea: Let us see what happens in CbV from a proof-theoretic viewpoint (Curry-Howard)

Summing up: a mismatch between syntax and semantics

In Plotkin's CbV λ-calculus there is a mismatch between syntax and semantics.
There are terms, such as

$$
\delta_{1}:=(\lambda x . \delta)(x x) \delta \quad \delta_{3}:=\delta((\lambda x . \delta)(x x))
$$

that are β_{v}-normal but their semantics is the same as $\delta \delta$, which is β_{v}-divergent!

- semantics: context equivalence, solvability, denotational models, ...

Somehow, in Plotkin's CbV λ-calculus, β_{v}-reduction is "not enough".

- Can we extend β_{v} so that δ_{1} and δ_{3} are divergent?
- But we want to keep a CbV discipline:

$$
(\lambda x . I)(\delta \delta) \text { is } \beta_{v} \text {-divergent (but } \beta \text {-normalizing) }
$$

Idea: Let us see what happens in CbV from a proof-theoretic viewpoint (Curry-Howard).

What I learned from Thomas when I was his PhD student

T: In the eternal fight between syntax and semantics, the semantics always wins.

G: I see.
T : Use linear logic and its
 semantics as a guideline.

G: Thank you!

Outline

(1) What is Call-by-Value?
(2) What is Wrong with Plotkin's Call-by-Value?
(3) A Linear Logic Perspective to Call-by-Value

4 Restoring Call-by-Value thanks to Linear Logic
(5) Conclusions

The role of linear logic with respect to λ-calculi

Girard's linear logic (1987) provides new concepts and tools to study λ-calculi:
(1) denotational models of linear logic provides denotational models for λ-calculi;
© clear notion of resource and linear consumption
$f: A \multimap B \approx f$ consumes a value of type A and transforms it into a value of type B;
(3) quantitative analysis of computation

- semantic tools to study execution time (De Carvalho et al.));
- "compatible" with cost models (Accattoli et al.)

LL also hints how to modify syntax and dynamics of λ-calculi to have "good properties"

Girard's linear logic (1987) provides new concepts and tools to study λ-calculi:
(1) denotational models of linear logic provides denotational models for λ-calculi;
© clear notion of resource and linear consumption $f: A \multimap B \approx f$ consumes a value of type A and transforms it into a value of type B;
© quantitative analysis of computation

- semantic tools to study execution time (De Carvalho et al.));
- "compatible" with cost models (Accattoli et al.).

LL also hints how to modify syntax and dynamics of λ-calculi to have "good properties"

The role of linear logic with respect to λ-calculi

Girard's linear logic (1987) provides new concepts and tools to study λ-calculi:
(1) denotational models of linear logic provides denotational models for λ-calculi;
(2) clear notion of resource and linear consumption $f: A \multimap B \approx f$ consumes a value of type A and transforms it into a value of type B;
(3) quantitative analysis of computation

- semantic tools to study execution time (De Carvalho et al.));
- "compatible" with cost models (Accattoli et al.).

LL also hints how to modify syntax and dynamics of λ-calculi to have "good properties"

The role of linear logic with respect to λ-calculi

Girard's linear logic (1987) provides new concepts and tools to study λ-calculi:
(1) denotational models of linear logic provides denotational models for λ-calculi;
(2) clear notion of resource and linear consumption $f: A \multimap B \approx f$ consumes a value of type A and transforms it into a value of type B;
(3) quantitative analysis of computation

- semantic tools to study execution time (De Carvalho et al.));
- "compatible" with cost models (Accattoli et al.).
© ...

LL also hints how to modify syntax and dynamics of λ-calculi to have "good properties"

The role of linear logic with respect to λ-calculi

Girard's linear logic (1987) provides new concepts and tools to study λ-calculi:
(1) denotational models of linear logic provides denotational models for λ-calculi;
(2) clear notion of resource and linear consumption $f: A \multimap B \approx f$ consumes a value of type A and transforms it into a value of type B;
(3) quantitative analysis of computation

- semantic tools to study execution time (De Carvalho et al.));
- "compatible" with cost models (Accattoli et al.).
© ...

LL also hints how to modify syntax and dynamics of λ-calculi to have "good properties".

The Curry-Howard-Girard correspondence

Logic Computer Science formula $4 \rightarrow$ type
proof 4 program
cut-elimination $\longleftrightarrow 4$ evaluation
coherence $\longleftrightarrow \nrightarrow$ termination

different encodings of \longleftrightarrow different evaluation mechanisms intuitionistic arrow in LL

Tools from intuitionistic linear logic (ILL) can be used to study properties of:

- call-by-name evaluation via Girard's translation (.) ${ }^{N}$.
- call-by-value evaluation via Girard's translation (. $)^{\text {V }}$

The Curry-Howard-Girard correspondence

Tools from intuitionistic linear logic (ILL) can be used to study properties of:

- call-by-name evaluation via Girard's translation (.) ${ }^{N}$,
- call-by-value evaluation via Girard's translation (

The Curry-Howard-Girard correspondence

Logic		Computer Science
formula	\longleftrightarrow	type
proof	\longleftrightarrow	program
cut-elimination	\longleftrightarrow	evaluation
coherence	\longleftrightarrow	termination

different encodings of $\longleftrightarrow \Longleftrightarrow$ different evaluation mechanisms intuitionistic arrow in LL
\rightsquigarrow Tools from intuitionistic linear logic (ILL) can be used to study properties of:

- call-by-name evaluation via Girard's translation $(\cdot)^{\mathrm{N}}$,
- call-by-value evaluation via Girard's translation $(\cdot)^{\mathrm{V}}$.

The two Girard's translations of IL into ILL (1987)
well-known translation $(\cdot)^{N}$

$$
\begin{aligned}
X^{\mathbb{N}} & =X \\
(A \rightarrow B)^{\mathbb{N}} & =!A^{\mathbb{N}} \multimap B^{\mathbb{N}} \\
(\Gamma \vdash A)^{\mathbb{N}} & =!\Gamma^{\mathbb{N}} \vdash A^{\mathbb{N}}
\end{aligned}
$$

$\begin{aligned} \text { simply typed } \Lambda & =\mathrm{IL}(\text { via Curry-Howard) } \\ \text { (untyped) } \Lambda & =\mathrm{IL}+\text { unique atomic type } o+\text { type identity } o=0 \rightarrow 0\end{aligned}$ (untyped) $\wedge \xrightarrow[0=10-\infty]{\substack{0=1000}}$ ILL (and then proof-nets)

The two Girard's translations of IL into ILL (1987)

well-known translation $(\cdot)^{N}$

$$
\begin{aligned}
X^{\mathbb{N}} & =X \\
(A \rightarrow B)^{\mathbb{N}} & =!A^{\mathbb{N}} \multimap B^{\mathbb{N}} \\
(\Gamma \vdash A)^{\mathbb{N}} & =!\Gamma^{\mathbb{N}} \vdash A^{\mathbb{N}}
\end{aligned}
$$

"boring" translation $(\cdot)^{V}$

$$
X^{V}=X
$$

$$
(A \rightarrow B)^{V}=!A^{V} \multimap!B^{V}
$$

$$
(\Gamma \vdash A)^{V}=!\Gamma^{V} \vdash!A^{V}
$$

simply typed $\Lambda=\mathrm{IL}$ (via Curry-Howard)
(untyped) $\Lambda=\mathrm{IL}+$ unique atomic type $o+$ type identity $o=0 \rightarrow 0$

Girard's first translation: $(\cdot)^{N}$

$$
\begin{aligned}
X^{\mathbb{N}} & =X \\
(A \rightarrow B)^{\mathbb{N}} & =!A^{\mathbb{N}} \multimap B^{\mathbb{N}} \\
(\Gamma \vdash A)^{\mathbb{N}} & =!\Gamma^{\mathbb{N}} \vdash A^{\mathbb{N}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (natural deduction for IL) (sequent calculus for ILL) } \\
& \overline{A \vdash \times A} \text { ax } \rightsquigarrow \frac{\overline{A^{\mathbb{N}} \vdash A^{\mathrm{N}}}}{!^{\mathrm{N}} \vdash A^{\mathrm{N}}} \text { ax } d e r \\
& \frac{\Gamma, A \vdash M B}{\Gamma \vdash \lambda \times M A \rightarrow B} \rightarrow_{i} \rightsquigarrow \frac{\Gamma^{\mathbb{N}},!A^{\mathbb{N}} \vdash B^{\mathbb{N}}}{!\Gamma^{\mathbb{N}} \vdash!A^{\mathrm{N}} \multimap B^{\mathbb{N}}} \ngtr \\
& \frac{\Gamma \vdash M A \rightarrow B \quad \Delta \vdash N A}{\Gamma, \Delta \vdash M N B} \rightarrow_{e} \rightsquigarrow
\end{aligned}
$$

The translation $(\cdot)^{\mathbb{N}}$ puts a ! in front of every formula on the left-hand side of \vdash \rightsquigarrow the translation of the structural rules is obvious.

Girard's first translation: $(\cdot)^{N}$

$$
\begin{aligned}
& X^{\mathbb{N}}=X \\
& (A \rightarrow B)^{\mathbb{N}}=!A^{\mathbb{N}} \multimap B^{\mathbb{N}} \\
& (\Gamma \vdash A)^{\mathbb{N}}=!\Gamma^{\mathbb{N}} \vdash A^{N} \\
& \text { (natural deduction for IL) (sequent calculus for ILL) } \\
& \overline{x: A \vdash x: A} \text { ax } \rightsquigarrow \frac{\overline{A^{\mathbb{N}} \vdash A^{\mathrm{N}}}}{!A^{\mathbb{N}} \vdash A^{\mathrm{N}}} \text { ax } d e r \\
& \frac{\Gamma, x: A \vdash M: B}{\Gamma \vdash \lambda \times M: A \rightarrow B} \rightarrow_{i} \rightsquigarrow \frac{\Gamma^{\mathbb{N}},!A^{\mathbb{N}} \vdash B^{\mathbb{N}}}{!\Gamma^{\mathbb{N}} \vdash!A^{\mathrm{N}} \multimap B^{\mathbb{N}}} \ngtr \\
& \frac{\Gamma \vdash M: A \rightarrow B \quad \Delta \vdash N: A}{\Gamma, \Delta \vdash M N: B} \rightarrow_{e} \rightsquigarrow
\end{aligned}
$$

The translation $(\cdot)^{\mathbb{N}}$ puts a ! in front of every formula on the left-hand side of \vdash \rightsquigarrow the translation of the structural rules is obvious.

Girard's second ("boring") translation: $(\cdot)^{\mathrm{V}}$

$$
\begin{aligned}
X^{V} & =X \\
(A \rightarrow B)^{V} & =!A^{V} \multimap!B^{V} \\
(\Gamma \vdash A)^{V} & =!\Gamma^{V} \vdash!A^{V}
\end{aligned}
$$

The translation $(\cdot)^{\mathrm{V}}$ puts a! in front of every formula on the left-hand side of \vdash \rightsquigarrow the translation of the structural rules is obvious.

Girard's second ("boring") translation: (. $)^{\mathrm{V}}$

$$
\begin{aligned}
X^{V} & =X \\
(A \rightarrow B)^{V} & =!A^{V} \multimap!B^{V} \\
(\Gamma \vdash A)^{V} & =!\Gamma^{V} \vdash!A^{V}
\end{aligned}
$$

The translation $(\cdot)^{\mathrm{V}}$ puts a! in front of every formula on the left-hand side of \vdash \rightsquigarrow the translation of the structural rules is obvious.

An example: from IL (natural deduction)...

$$
\begin{aligned}
& A, b B, \times B \rightarrow C \vdash(\lambda c a)(\times b) \cdot A \\
& \downarrow_{\text {cut }}
\end{aligned}
$$

An example: from IL (natural deduction)...

$$
\begin{aligned}
& \pi=\frac{\frac{\overline{a: A \vdash a: A}^{a x}}{a: A, c: C \vdash a: A}}{\frac{a: A \vdash \lambda c a: C \rightarrow A}{} \rightarrow_{i} \quad \frac{x^{x: B \rightarrow C \vdash x: B \rightarrow C}}{a: A, b: B, x: B \rightarrow C \vdash(\lambda c a)(x b): A} \overline{b: B \vdash b: B}^{a x}} \rightarrow_{e} \\
& \downarrow_{\text {cut }} \\
& \operatorname{nf}(\pi)=\frac{\overline{a: A \vdash a: A}^{a x}}{\frac{a: A, b: B, \vdash a: A}{a: A, b: B, x: B \rightarrow C \vdash a: A}} w \\
& (\lambda c a)(x b) \rightarrow_{\beta} a
\end{aligned}
$$

An example: from IL (natural deduction)...

int. logic (IL):

λ-calculus:

An example: . . . to ILL via $(\cdot)^{\mathbb{N}}$

$$
\begin{aligned}
& \text { cut } \downarrow_{+}
\end{aligned}
$$

An example: . . . to ILL via $(\cdot)^{\mathbb{N}}$

intuit. logic (IL):

An example: . . . to ILL via $(\cdot)^{\mathbb{N}}$

$$
(\lambda c a)(x b) \rightarrow_{\beta} a
$$

$$
\begin{aligned}
& \text { cut } \downarrow_{+} \\
& \mathrm{nf}\left(\pi^{\mathrm{N}}\right)=\frac{\overline{\frac{a: A \vdash a: A}{a x}}^{a!!A \vdash a: A}}{\frac{\bar{a}_{a!!}^{a:!A, b:!B, \vdash a: A}}{} w} w=(\operatorname{nf}(\pi))^{\mathrm{N}}
\end{aligned}
$$

An example: ...to ILL via $(\cdot)^{\mathrm{V}}$

$$
\begin{aligned}
& \frac{\overline{!B \vdash!B}^{a x} \overline{!C \vdash!C}^{a x}}{}=
\end{aligned}
$$

$$
\begin{aligned}
& !A, b!B, \times!(!B \multimap!C) \vdash(\lambda c a)(\times b) A \\
& \text { cut } \downarrow_{+}
\end{aligned}
$$

An example: . . . to ILL via $(\cdot)^{\mathrm{V}}$

intuit. logic (IL):
intuit. $\stackrel{\text { (jL })^{v}}{\downarrow}$ (ILL):

An example: . . . to ILL via $(\cdot)^{\mathrm{V}}$

$$
\begin{aligned}
& \text { cut } \downarrow_{+}
\end{aligned}
$$

$(\lambda c a)(x b) \rightarrow_{\beta_{v}} a[x b / c]$ (i.e. let $c:=x b$ in $\left.a\right) \approx(\lambda c a)(x b) \ldots$ boring (according to Girard). But $a[x b / c]$ is β_{v}-normal!

Call-by-name vs. call-by-value from a Linear Logic point of view

In the λ-calculus there are two evaluation mechanisms:

- call-by-name (CbN, β-reduction): no restriction in firing a β-redex;
- call-by-value (CbV, β_{v}-reduction): a β-redex $(\lambda x t) s$ can be fired only if s is a value.

ILL (and proof-nets) cut-elimination simulates
β-reduction via the translation (. β_{v}-reduction via the translation

- via (.) ${ }^{\text {N }}$ every argument is translated by a box \rightsquigarrow every argument can be duplicated or discarded (CbN discipline);
- via (. $)^{v}$ every (and only) abstraction or variable is translated by a box \rightsquigarrow only abstraction or variable can be duplicated or discarded (CbV discipline)

The two Girard's logical translations can explain the two different evaluation mechanisms inside the same setting, bringing them into the scope of the Curry-Howard isomorphism.Call-by-name, call-by-value, call-by-need, and the linear lambda calculus. John
Maraist, Martin Odersky, David Turner, and Philip Wadler. MFPS, 1995

Call-by-name vs. call-by-value from a Linear Logic point of view

In the λ-calculus there are two evaluation mechanisms:

- call-by-name (CbN, β-reduction): no restriction in firing a β-redex;
- call-by-value (CbV, β_{v}-reduction): a β-redex $(\lambda x t) s$ can be fired only if s is a value.

ILL (and proof-nets) cut-elimination simulates $\left\{\begin{array}{l}\beta \text {-reduction via the translation }(\cdot)^{\mathbb{N}} \\ \beta_{v} \text {-reduction via the translation }(\cdot)^{\mathrm{V}}\end{array}\right.$

- via $(\cdot)^{\mathbb{N}}$ every argument is translated by a box \rightsquigarrow every argument can be duplicated or discarded (CbN discipline);
- via (•) every (and only) abstraction or variable is translated by a box \rightsquigarrow only abstraction or variable can be duplicated or discarded (CbV discipline).

The two Girard's logical translations can explain the two different evaluation mechanisms inside the same setting, bringing them into the scope of the Curry-Howard isomorphism.Call-by-name, call-by-value, call-by-need, and the linear lambda calculus. John Maraist, Martin Odersloy, David Turner, and Dhilim M/adler. MEDS, 1 OO5

Call-by-name vs. call-by-value from a Linear Logic point of view

In the λ-calculus there are two evaluation mechanisms:

- call-by-name (CbN, β-reduction): no restriction in firing a β-redex;
- call-by-value (CbV, β_{v}-reduction): a β-redex $(\lambda x t) s$ can be fired only if s is a value.

ILL (and proof-nets) cut-elimination simulates $\left\{\begin{array}{l}\beta \text {-reduction via the translation }(\cdot)^{\mathrm{N}} \\ \beta_{v} \text {-reduction via the translation }(\cdot)^{\mathrm{V}}\end{array}\right.$

- via $(\cdot)^{\mathbb{N}}$ every argument is translated by a box \rightsquigarrow every argument can be duplicated or discarded (CbN discipline);
- via (•) every (and only) abstraction or variable is translated by a box \rightsquigarrow only abstraction or variable can be duplicated or discarded (CbV discipline).

The two Girard's logical translations can explain the two different evaluation mechanisms inside the same setting, bringing them into the scope of the Curry-Howard isomorphism.

R Call-by-name, call-by-value, call-by-need, and the linear lambda calculus. John Maraist, Martin Odersky, David Turner, and Philip Wadler. MFPS, 1995.

Outline

(1) What is Call-by-Value?
(2) What is Wrong with Plotkin's Call-by-Value?
(3) A Linear Logic Perspective to Call-by-Value
(4) Restoring Call-by-Value thanks to Linear Logic

What can LL say about the issues in Plotkin's CbV?

The terms

$$
\delta_{1}:=(\lambda x \cdot \delta)(x x) \delta \quad \delta_{3}:=\delta((\lambda x \cdot \delta)(x x))
$$

are β_{v}-normal because the β-redex (but not β_{v}-redex) $(\lambda x \ldots)(x x)$ is stuck. \rightsquigarrow The β-redex prevents the two δ 's from interacting!

But if we translate δ_{1} and δ_{3} into ILL proof-nets, the two δ^{\prime} 's can interact. \rightsquigarrow The translations of δ_{1} and δ_{3} into ILL proof-nets are diverging!

ILL is suggesting a way to extend β_{v}-reduction in a CbV setting.
Question: How can we internalize ILL behavior into a calculus?
Answer: There are at least two solutions.

What can LL say about the issues in Plotkin's CbV?

The terms

$$
\delta_{1}:=(\lambda x . \delta)(x x) \delta \quad \delta_{3}:=\delta((\lambda x . \delta)(x x))
$$

are β_{v}-normal because the β-redex (but not β_{v}-redex) $(\lambda x \ldots)(x x)$ is stuck. \rightsquigarrow The β-redex prevents the two δ 's from interacting!

But if we translate δ_{1} and δ_{3} into ILL proof-nets, the two δ 's can interact. \rightsquigarrow The translations of δ_{1} and δ_{3} into ILL proof-nets are diverging!

ILL is suggesting a way to extend β_{v}-reduction in a CbV setting.

Question: How can we internalize ILL behavior into a calculus?

Answer: There are at least two solutions.

What can LL say about the issues in Plotkin's CbV?

The terms

$$
\delta_{1}:=(\lambda x . \delta)(x x) \delta \quad \delta_{3}:=\delta((\lambda x . \delta)(x x))
$$

are β_{v}-normal because the β-redex (but not β_{v}-redex) $(\lambda x \ldots)(x x)$ is stuck. \rightsquigarrow The β-redex prevents the two δ 's from interacting!

But if we translate δ_{1} and δ_{3} into ILL proof-nets, the two δ 's can interact.
\rightsquigarrow The translations of δ_{1} and δ_{3} into ILL proof-nets are diverging!
ILL is suggesting a way to extend β_{v}-reduction in a CbV setting.
Question: How can we internalize ILL behavior into a calculus?

Answer: There are at least two solutions.

Solution 1: Value Substitution Calculus [AccPao12]

Terms: $s, t, u::=v|t u| t[u / x]$
Substitution contexts: $L::=\left[t_{1} / x_{1}\right] \ldots\left[t_{n} / x_{n}\right]$
Reductions: $\quad(\lambda x . t) L s \rightarrow_{m} t[s / x] L$

Values: $v::=x \mid \lambda x . t$
$t[v L / x] \rightarrow_{e} t\{v / x\} L$

Solution 1: Value Substitution Calculus [AccPao12]

$$
\text { Terms: } s, t, u::=v|t u| t[u / x] \quad \text { Values: } v::=x \mid \lambda x . t
$$

Substitution contexts: $L::=\left[t_{1} / x_{1}\right] \ldots\left[t_{n} / x_{n}\right]$

$$
\text { Reductions: } \quad(\lambda x . t) L s \rightarrow_{m} t[s / x] L \quad t[v L / x] \rightarrow_{e} t\{v / x\} L
$$

(1) β_{v}-reduction can be simulated into VSC.

$$
(\lambda x . t) v \rightarrow_{m} t[v / x] \rightarrow_{e} t\{v / x\}
$$

(2) VSC extends β_{v}-reduction:

$$
\begin{aligned}
& \delta_{1}=(\lambda x . \delta)(x x) \delta \rightarrow_{m} \delta[x x / x] \delta \rightarrow_{m}(z z)[\delta / z][x x / x] \rightarrow_{e} \delta \delta[x x / x] \rightarrow \cdots \\
& \delta_{3}=\delta((\lambda x . \delta)(x x)) \rightarrow_{m} \delta(\delta[x x / x]) \rightarrow_{m}(z z)[\delta[x x / x] / z] \rightarrow_{e} \delta \delta[x x / x] \rightarrow \cdots
\end{aligned}
$$

In VSC, δ_{1} and δ_{3} are divergent as $\delta \delta$!

Solution 2: Shuffling Calculus [CarrGue14]

Terms: $s, t, u::=v \mid t u$
Values: $v::=x \mid \lambda x . t$
β_{v}-reduction: $(\lambda x . t) v \rightarrow_{\beta_{v}} t\{v / x\}$
Shuffling reductions: $(\lambda x . t) s u \rightarrow_{\sigma_{1}}(\lambda x . t u) s \quad v((\lambda x . t) s) \rightarrow_{\sigma_{3}}(\lambda x . v t) s$

Solution 2: Shuffling Calculus [CarrGue14]

$$
\text { Terms: } \quad s, t, u::=v \mid t u \quad \text { Values: } v::=x \mid \lambda x . t
$$

β_{v}-reduction: $(\lambda x . t) v \rightarrow_{\beta_{v}} t\{v / x\}$
Shuffling reductions: $(\lambda x . t) s u \rightarrow_{\sigma_{1}}(\lambda x . t u) s \quad v((\lambda x . t) s) \rightarrow_{\sigma_{3}}(\lambda x . v t) s$
(1) The shuffling calculus extends β_{v}-reduction:

$$
\begin{aligned}
& \delta_{1}=(\lambda x . \delta)(x x) \delta \rightarrow_{\sigma_{1}}(\lambda x . \delta \delta)(x x) \rightarrow_{\beta_{v}}(\lambda x . \delta \delta)(x x) \rightarrow_{\beta_{v}} \cdots \\
& \delta_{3}=\delta((\lambda x . \delta)(x x)) \rightarrow_{\sigma_{3}}(\lambda x . \delta \delta)(x x) \rightarrow_{\beta_{v}}(\lambda x . \delta \delta)(x x) \rightarrow_{\beta_{v}} \cdots
\end{aligned}
$$

In the shuffling calculus, δ_{1} and δ_{3} are divergent as $\delta \delta$!

VSC vs. Shuffling: the importance of being (linearly) logical

Both VSC and Shuffling (Shuf) calculi are inspired by ILL proof-nets. It turns out that they are "essentially the same" (termination equivalence)

Theorem (termination equivalence, [AccGue16])
Let t be a term: t is VSC-normalizing iff t is Shuf-normalizing.

```
Not ad hoc: these settings are termination equivalent to other extensions of Plotkin's one
- fireball calculus (Paolini \& Ronchi Della Rocca, 1999; Grégoire \& Leroy, 2002);
- CbV \(\bar{\lambda} \mu \tilde{\mu}-\) calculus (Curien \& Herbelin, 2000);
(Introduced with different motivations: implementative, semantic, proof-theoretic, etc.)
```

Just different syntactic incarnations of the "same" CbV calculus (extending Plotkin's one)

VSC vs. Shuffling: the importance of being (linearly) logical

Both VSC and Shuffling (Shuf) calculi are inspired by ILL proof-nets. It turns out that they are "essentially the same" (termination equivalence)

Theorem (termination equivalence, [AccGue16])

Let t be a term: t is VSC-normalizing iff t is Shuf-normalizing.

Not ad hoc: these settings are termination equivalent to other extensions of Plotkin's one

- fireball calculus (Paolini \& Ronchi Della Rocca, 1999; Grégoire \& Leroy, 2002);
- CbV $\bar{\lambda} \mu \tilde{\mu}$-calculus (Curien \& Herbelin, 2000);
- ...
(Introduced with different motivations: implementative, semantic, proof-theoretic, etc.)
Just different syntactic incarnations of the "same" CbV calculus (extending Plotkin's one).

Restoring what was wrong in Plotkin's CbV!

In these CbV extensions we restore the good properties missing in Plotkin's CbV calculus.
(1) Contextual equivalence in VSC and Shuf is the same as in Plotkin's calculus, but now δ_{1} and δ_{3} are CbV -divergent as $\delta \delta$.
(C) Solvability in VSC and Shuf is the same as in Plotkin's calculus,
but now we have an internal operational characterization of CbV solvability
heorem [AccPao12, CarrGue14]
(1) t is CbV-solvable iff t is normalizing for weak CbV-reduction.
(e) Every CbV-normalizing term is CbV-solvable, but the converse fails (e.g. Yv).
(3) Denotational semantics in the VSC and Shuf is the same as in Plotkin's calculus, but now we also have completeness

Restoring what was wrong in Plotkin's CbV!

In these CbV extensions we restore the good properties missing in Plotkin's CbV calculus.
(1) Contextual equivalence in VSC and Shuf is the same as in Plotkin's calculus, but now δ_{1} and δ_{3} are CbV -divergent as $\delta \delta$.
(c) Solvability in VSC and Shuf is the same as in Plotkin's calculus, but now we have an internal operational characterization of CbV solvability

Theorem [AccPao12, CarrGue14]

(1) t is CbV -solvable iff t is normalizing for weak CbV -reduction.
(2) Every CbV -normalizing term is CbV -solvable, but the converse fails (e.g. Y_{v}).
(3) Denotational semantics in the VSC and Shuf is the same as in Plotkin's calculus, but now we also have completeness
\square

Restoring what was wrong in Plotkin's CbV!

In these CbV extensions we restore the good properties missing in Plotkin's CbV calculus.
(1) Contextual equivalence in VSC and Shuf is the same as in Plotkin's calculus, but now δ_{1} and δ_{3} are CbV -divergent as $\delta \delta$.
(c) Solvability in VSC and Shuf is the same as in Plotkin's calculus, but now we have an internal operational characterization of CbV solvability

Theorem [AccPao12, CarrGue14]

(1) t is CbV -solvable iff t is normalizing for weak CbV -reduction.
(2) Every CbV-normalizing term is CbV-solvable, but the converse fails (e.g. Y_{v}).
(3) Denotational semantics in the VSC and Shuf is the same as in Plotkin's calculus, but now we also have completeness

Theorem (Correctness and Completeness [CarrGue12])

$\llbracket t \rrbracket_{\bar{x}} \neq \emptyset$ iff t is normalizing for "weak" CbV-reduction (not reducing under λ 'ss).

Outline

(1) What is Call-by-Value?
(2) What is Wrong with Plotkin's Call-by-Value?
(3) A Linear Logic Perspective to Call-by-Value

4 Restoring Call-by-Value thanks to Linear Logic
(5) Conclusions

Summing up

(1) Plotkin's CbV λ-calculus can be extended by taking inspiration from LL.
© The extensions are "conservative": they do not change CbV semantic notions.

- Many issues in Plotkin's calculus are solved in these extended CbV settings.
(a) We have all the ingredients to develon a theory for CbV/ as elegant as for CbN.

Summing up

(1) Plotkin's CbV λ-calculus can be extended by taking inspiration from LL.
(3) The extensions are "conservative": they do not change CbV semantic notions.

- Many issues in Plotkin's calculus are solved in these extended CbV settings.
- We have all the ingredients to develop a theory for CbV as elegant as for CbN .

Summing up

(1) Plotkin's CbV λ-calculus can be extended by taking inspiration from LL.
(3) The extensions are "conservative": they do not change CbV semantic notions.
(0) Many issues in Plotkin's calculus are solved in these extended CbV settings.

- We have all the ingredients to develop a theory for CbV as elegant as for CbN .

Summing up

(1) Plotkin's CbV λ-calculus can be extended by taking inspiration from LL.
(0) The extensions are "conservative": they do not change CbV semantic notions.

- Many issues in Plotkin's calculus are solved in these extended CbV settings.
- We have all the ingredients to develop a theory for CbV as elegant as for CbN .

Open Question 0: Categorical Semantics for CbV

Question: $C b N: C C C=C b V: X$. What is X ?
Partial answer: [Ehrh12] shows how to build a model for CbV from a model of LL.

Open Question 1: A more general framework!

The existence of two separate paradigms (CbN and CbV λ-calculi) is troubling:

- it makes each language appear arbitrary (a unified language is more canonical);
- each time we create a new style of semantics (e.g. operational semantics, continuations, Scott semantics, game semantics, etc.) we always need to do it twice.

Question: Is there a general calculus containing both CbN and CbV ?

In this setting we compare CbN and $\mathrm{CbV} \lambda$-calculi

- in the same rewriting system, and
- with the same denotational semantics,
- obtaining CbN and CbV as fragments of this setting via translations.

Answer: [EhrGue16], [GueMan18], [BKVV20], [FagGue20],

Open Question 1: A more general framework!

The existence of two separate paradigms (CbN and CbV λ-calculi) is troubling:

- it makes each language appear arbitrary (a unified language is more canonical);
- each time we create a new style of semantics (e.g. operational semantics, continuations, Scott semantics, game semantics, etc.) we always need to do it twice.

Question: Is there a general calculus containing both CbN and CbV ?

In this setting we compare CbN and $\mathrm{CbV} \lambda$-calculi

- in the same rewriting system, and
- with the same denotational semantics,
- obtaining CbN and CbV as fragments of this setting via translations.

Answer: [EhrGue16], [GueMan18], [BKVV20], [FagGue20], ...

Open Question 2: Inhabitation

In the non-idempotent intersection type system for CbV, typability is undecidable. Question: Is the inabitation problem decidable in CbV ?

Given an typing context Γ and a multi type M, is there a term t such that

$$
\ulcorner\vdash t: M \text { is derivable? }
$$

Question bis: Same question, but in a more general framework subsuming CbV and CbN.
Answer: Yes, it is decidable an we can find all the inhabitants! [ArrKesGue23]

Open Question 2: Inhabitation

In the non-idempotent intersection type system for CbV, typability is undecidable.
Question: Is the inabitation problem decidable in CbV ?
Given an typing context Γ and a multi type M, is there a term t such that

$$
\ulcorner\vdash t: M \text { is derivable? }
$$

Question bis: Same question, but in a more general framework subsuming CbV and CbN .
Answer: Yes, it is decidable an we can find all the inhabitants! [ArrKesGue23]

Open Question 2: Inhabitation

In the non-idempotent intersection type system for CbV, typability is undecidable.
Question: Is the inabitation problem decidable in CbV ?
Given an typing context Γ and a multi type M, is there a term t such that

$$
\ulcorner\vdash t: M \text { is derivable? }
$$

Question bis: Same question, but in a more general framework subsuming CbV and CbN .
Answer: Yes, it is decidable an we can find all the inhabitants! [ArrKesGue23]

Open question 3: Call by Need

Question: What about Call-by-Need? Can we use LL to understand Call-by-Need?

Question bis: Is there a general framework subsuming $\mathrm{CbV}, \mathrm{CbN}$ and CbNeed ?

Idea: We should split the ! comonad into two:

- one for duplication:
- one for erasure.

Open question 3: Call by Need

Question: What about Call-by-Need? Can we use LL to understand Call-by-Need? Question bis: Is there a general framework subsuming $\mathrm{CbV}, \mathrm{CbN}$ and CbNeed ?

Idea: We should split the! comonad into two:

- one for duplication:
- one for erasure.

Open question 3: Call by Need

Question: What about Call-by-Need? Can we use LL to understand Call-by-Need?
Question bis: Is there a general framework subsuming $\mathrm{CbV}, \mathrm{CbN}$ and CbNeed ?

Idea: We should split the ! comonad into two:

- one for duplication;
- one for erasure.

Thank you!

Questions?

