
The Call-by-Value λ-Calculus from a Linear Logic Perspective

Giulio Guerrieri

LIS, Aix-Marseille Université (Marseille, France)

Workshop in honour of Thomas Ehrhard’s 60 years

Paris, 30 September 2022

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 1 / 37

Outline

1 What is Call-by-Value?

2 What is Wrong with Plotkin’s Call-by-Value?

3 A Linear Logic Perspective to Call-by-Value

4 Restoring Call-by-Value thanks to Linear Logic

5 Conclusions

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 2 / 37

Outline

1 What is Call-by-Value?

2 What is Wrong with Plotkin’s Call-by-Value?

3 A Linear Logic Perspective to Call-by-Value

4 Restoring Call-by-Value thanks to Linear Logic

5 Conclusions

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 3 / 37

A specific λ-calculus among a plethora of λ-calculi

The λ-calculus is the model of computation underlying

functional programming languages (Haskell, OCaml, . . .)

proof assistants (Coq, Isabelle/Hol, . . .).

Actually, there are many λ-calculi, depending on

the evaluation mechanism (e.g., call-by-name, call-by-value, call-by-need);

computational feature the calculus aims to model (e.g., pure, non-deterministic);

the type system (e.g. untyped, simply typed, second order).

In this talk: pure untyped call-by-value λ-calculus (mainly).

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 4 / 37

A specific λ-calculus among a plethora of λ-calculi

The λ-calculus is the model of computation underlying

functional programming languages (Haskell, OCaml, . . .)

proof assistants (Coq, Isabelle/Hol, . . .).

Actually, there are many λ-calculi, depending on

the evaluation mechanism (e.g., call-by-name, call-by-value, call-by-need);

computational feature the calculus aims to model (e.g., pure, non-deterministic);

the type system (e.g. untyped, simply typed, second order).

In this talk: pure untyped call-by-value λ-calculus (mainly).

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 4 / 37

A specific λ-calculus among a plethora of λ-calculi

The λ-calculus is the model of computation underlying

functional programming languages (Haskell, OCaml, . . .)

proof assistants (Coq, Isabelle/Hol, . . .).

Actually, there are many λ-calculi, depending on

the evaluation mechanism (e.g., call-by-name, call-by-value, call-by-need);

computational feature the calculus aims to model (e.g., pure, non-deterministic);

the type system (e.g. untyped, simply typed, second order).

In this talk: pure untyped call-by-value λ-calculus (mainly).

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 4 / 37

Call-by-Name vs. Call-by-Value (for dummies)

Call-by-Name (CbN): pass the argument to the calling function before evaluating it.

Call-by-Value (CbV): pass the argument to the calling function after evaluating it.

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 5 / 37

Call-by-Name vs. Call-by-Value (for dummies)

Call-by-Name (CbN): pass the argument to the calling function before evaluating it.

Call-by-Value (CbV): pass the argument to the calling function after evaluating it.

(λx . x + x)(2 ∗ 3)
CbN

ss
CbV

++
(2 ∗ 3) + (2 ∗ 3)

CbN ��

(λx . x + x)6
CbV��

6 + (2 ∗ 3)
CbN ��

6 + 6
CbV��

6 + 6
CbN ��

12

12

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 5 / 37

Call-by-Name vs. Call-by-Value (for dummies)

Call-by-Name (CbN): pass the argument to the calling function before evaluating it.

Call-by-Value (CbV): pass the argument to the calling function after evaluating it.

(λy .λx . x)Ω
CbN

vv
CbV

))
λx .x (λy .λx . x)Ω

CbV��
...

(Ω is a diverging program)

Summing up, CbV is eager, that is,
1 CbV is smarter than CbN when the argument must be duplicated;
2 CbV is sillier than CbN when the argument must be discarded.

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 5 / 37

Plotkin’s Call-by-Value λ-calculus [Plo75]

Terms: s, t, u ::= v | tu Values: v ::= x | λx .t

CbV reduction: (λx .t)v →βv t{v/x} (restriction to—CbN—β-rule)

Why? Closer to real implementation of most programming languages & proof assistants.

CbN and CbV λ-calculi have different operational and denotational semantics
⇝ in general, it is impossible to derive a property for CbV from CbN, or vice versa.

Examples, with I := λz .z (identity) and δ := λz .zz (duplicator):
1 (λy .I)(δδ) β-normalizes but βv -diverges

(λy .I)(δδ) →β I (λy .I)(δδ) →βv (λy .I)(δδ) →βv . . .

2 (λx .δ)(xx)δ is βv -normal but β-divergent: (λx .δ)(xx)δ →β δδ →β δδ →β . . .

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 6 / 37

Plotkin’s Call-by-Value λ-calculus [Plo75]

Terms: s, t, u ::= v | tu Values: v ::= x | λx .t

CbV reduction: (λx .t)v →βv t{v/x} (restriction to—CbN—β-rule)

Why? Closer to real implementation of most programming languages & proof assistants.

CbN and CbV λ-calculi have different operational and denotational semantics
⇝ in general, it is impossible to derive a property for CbV from CbN, or vice versa.

Examples, with I := λz .z (identity) and δ := λz .zz (duplicator):
1 (λy .I)(δδ) β-normalizes but βv -diverges

(λy .I)(δδ) →β I (λy .I)(δδ) →βv (λy .I)(δδ) →βv . . .

2 (λx .δ)(xx)δ is βv -normal but β-divergent: (λx .δ)(xx)δ →β δδ →β δδ →β . . .

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 6 / 37

Plotkin’s Call-by-Value λ-calculus [Plo75]

Terms: s, t, u ::= v | tu Values: v ::= x | λx .t

CbV reduction: (λx .t)v →βv t{v/x} (restriction to—CbN—β-rule)

Why? Closer to real implementation of most programming languages & proof assistants.

CbN and CbV λ-calculi have different operational and denotational semantics
⇝ in general, it is impossible to derive a property for CbV from CbN, or vice versa.

Examples, with I := λz .z (identity) and δ := λz .zz (duplicator):
1 (λy .I)(δδ) β-normalizes but βv -diverges

(λy .I)(δδ) →β I (λy .I)(δδ) →βv (λy .I)(δδ) →βv . . .

2 (λx .δ)(xx)δ is βv -normal but β-divergent: (λx .δ)(xx)δ →β δδ →β δδ →β . . .

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 6 / 37

Plotkin’s Call-by-Value λ-calculus [Plo75]

Terms: s, t, u ::= v | tu Values: v ::= x | λx .t

CbV reduction: (λx .t)v →βv t{v/x} (restriction to—CbN—β-rule)

Why? Closer to real implementation of most programming languages & proof assistants.

CbN and CbV λ-calculi have different operational and denotational semantics
⇝ in general, it is impossible to derive a property for CbV from CbN, or vice versa.

Examples, with I := λz .z (identity) and δ := λz .zz (duplicator):
1 (λy .I)(δδ) β-normalizes but βv -diverges

(λy .I)(δδ) →β I (λy .I)(δδ) →βv (λy .I)(δδ) →βv . . .

2 (λx .δ)(xx)δ is βv -normal but β-divergent: (λx .δ)(xx)δ →β δδ →β δδ →β . . .

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 6 / 37

Outline

1 What is Call-by-Value?

2 What is Wrong with Plotkin’s Call-by-Value?

3 A Linear Logic Perspective to Call-by-Value

4 Restoring Call-by-Value thanks to Linear Logic

5 Conclusions

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 7 / 37

A symptom that Plotkin’s CbV is sick: Contextual equivalence

Def. Terms t, t′ are contextually equivalent if they are observably indistinguishable, i.e.,

for every context C, C⟨t⟩ →∗
βv

v (for some value v) iff C⟨t′⟩ →∗
βv

v ′ (for some value v ′)

Consider the terms (with δ := λz .zz as usual)

δ1 := (λx .δ)(xx)δ δ3 := δ((λx .δ)(xx))

δ1 and δ3 are βv -normal but contextually equivalent to δδ (which is βv -divergent)!

The “energy” (i.e. divergence) in δ1 and δ3 is only potential, in δδ is kinetic!

Why are δ1 and δ3 stuck? Why cannot we transform their potential energy in kinetic?
It seems that in Plotkin’s CbV λ-calculus something is missing...

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 8 / 37

A symptom that Plotkin’s CbV is sick: Contextual equivalence

Def. Terms t, t′ are contextually equivalent if they are observably indistinguishable, i.e.,

for every context C, C⟨t⟩ →∗
βv

v (for some value v) iff C⟨t′⟩ →∗
βv

v ′ (for some value v ′)

Consider the terms (with δ := λz .zz as usual)

δ1 := (λx .δ)(xx)δ δ3 := δ((λx .δ)(xx))

δ1 and δ3 are βv -normal but contextually equivalent to δδ (which is βv -divergent)!

The “energy” (i.e. divergence) in δ1 and δ3 is only potential, in δδ is kinetic!

Why are δ1 and δ3 stuck? Why cannot we transform their potential energy in kinetic?
It seems that in Plotkin’s CbV λ-calculus something is missing...

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 8 / 37

A symptom that Plotkin’s CbV is sick: Contextual equivalence

Def. Terms t, t′ are contextually equivalent if they are observably indistinguishable, i.e.,

for every context C, C⟨t⟩ →∗
βv

v (for some value v) iff C⟨t′⟩ →∗
βv

v ′ (for some value v ′)

Consider the terms (with δ := λz .zz as usual)

δ1 := (λx .δ)(xx)δ δ3 := δ((λx .δ)(xx))

δ1 and δ3 are βv -normal but contextually equivalent to δδ (which is βv -divergent)!

The “energy” (i.e. divergence) in δ1 and δ3 is only potential, in δδ is kinetic!

Why are δ1 and δ3 stuck? Why cannot we transform their potential energy in kinetic?
It seems that in Plotkin’s CbV λ-calculus something is missing...

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 8 / 37

A second symptom that Plotkin’s CbV is sick: Solvability (1 of 2)

In a calculus X, a term t is solvable if there is a head context H such that H⟨t⟩ →∗
X I .

In the CbN λ-calculus, solvability is well-studied and has an elegant theory.
1 Internal operational characterization: t is CbN-solvable iff t is head β-normalizing.
2 Every β-normalizing term is CbN-solvable, but the converse fails (e.g. Y).
3 The λ-theory that equates all CbN-unsolvable terms is consistent.
4 CbN-unsolvable terms represent undefined partial recursive functions.

β-normalizing CbN-solvable

Λ

Moral: CbN-solvable terms are all and only the meaningful terms in CbN.
⇝ CbN-unsolvable terms are meaningless, and “heavily” divergent.

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 9 / 37

A second symptom that Plotkin’s CbV is sick: Solvability (1 of 2)

In a calculus X, a term t is solvable if there is a head context H such that H⟨t⟩ →∗
X I .

In the CbN λ-calculus, solvability is well-studied and has an elegant theory.
1 Internal operational characterization: t is CbN-solvable iff t is head β-normalizing.
2 Every β-normalizing term is CbN-solvable, but the converse fails (e.g. Y).
3 The λ-theory that equates all CbN-unsolvable terms is consistent.
4 CbN-unsolvable terms represent undefined partial recursive functions.

β-normalizing CbN-solvable

Λ

Moral: CbN-solvable terms are all and only the meaningful terms in CbN.
⇝ CbN-unsolvable terms are meaningless, and “heavily” divergent.

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 9 / 37

A second symptom that Plotkin’s CbV is sick: Solvability (1 of 2)

In a calculus X, a term t is solvable if there is a head context H such that H⟨t⟩ →∗
X I .

In the CbN λ-calculus, solvability is well-studied and has an elegant theory.
1 Internal operational characterization: t is CbN-solvable iff t is head β-normalizing.
2 Every β-normalizing term is CbN-solvable, but the converse fails (e.g. Y).
3 The λ-theory that equates all CbN-unsolvable terms is consistent.
4 CbN-unsolvable terms represent undefined partial recursive functions.

β-normalizing CbN-solvable

Λ

Moral: CbN-solvable terms are all and only the meaningful terms in CbN.
⇝ CbN-unsolvable terms are meaningless, and “heavily” divergent.

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 9 / 37

A second symptom that Plotkin’s CbV is sick: Solvability (2 of 2)

In CbV, all these results are false! In particular,
1 There is no internal operational characterization of CbV-solvability.
2 The set of CbV-solvable terms does not include the set of βv -normalizing ones.

δ1 := (λx .δ)(xx)δ δ3 := δ((λx .δ)(xx))

δ1 and δ3 are βv -normal but CbV-unsolvable (δδ is CbV-unsolvable too)!

βv -normalizing CbV-solvable

Λ

Moral: If we stick to the idea CbV-solvable = meaningful in CbV, we have two options:
1 We change the notion of CbV-solvability (i.e., we change the semantics of CbV);
2 We change the notion of reduction in Plotkin’s CbV (i.e., we change its syntax).

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 10 / 37

A second symptom that Plotkin’s CbV is sick: Solvability (2 of 2)

In CbV, all these results are false! In particular,
1 There is no internal operational characterization of CbV-solvability.
2 The set of CbV-solvable terms does not include the set of βv -normalizing ones.

δ1 := (λx .δ)(xx)δ δ3 := δ((λx .δ)(xx))

δ1 and δ3 are βv -normal but CbV-unsolvable (δδ is CbV-unsolvable too)!

βv -normalizing CbV-solvable

Λ

Moral: If we stick to the idea CbV-solvable = meaningful in CbV, we have two options:
1 We change the notion of CbV-solvability (i.e., we change the semantics of CbV);
2 We change the notion of reduction in Plotkin’s CbV (i.e., we change its syntax).

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 10 / 37

A second symptom that Plotkin’s CbV is sick: Solvability (2 of 2)

In CbV, all these results are false! In particular,
1 There is no internal operational characterization of CbV-solvability.
2 The set of CbV-solvable terms does not include the set of βv -normalizing ones.

δ1 := (λx .δ)(xx)δ δ3 := δ((λx .δ)(xx))

δ1 and δ3 are βv -normal but CbV-unsolvable (δδ is CbV-unsolvable too)!

βv -normalizing CbV-solvable

Λ

Moral: If we stick to the idea CbV-solvable = meaningful in CbV, we have two options:
1 We change the notion of CbV-solvability (i.e., we change the semantics of CbV);
2 We change the notion of reduction in Plotkin’s CbV (i.e., we change its syntax).

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 10 / 37

A third symptom that Plotkin’s CbV is sick: denotational semantics. (1 of 2)

[Ehr12] defined a non-idempotent intersection type system for Plotkin’s CbV λ-calculus.

Linear types L ::= M ⊸ N Multi types M,N ::= [L1, . . . , Ln] n ≥ 0

Idea: [L, L′, L′] ≈ L ∧ L′ ∧ L′ ̸= L ∧ L′ (commutative, associative, non-idempotent ∧).

ax
x : [L] ⊢ x : L

Γ, x : M ⊢ t : N
λ

Γ ⊢ λx.t : M⊸N

Γ1 ⊢ v : L1
n≥0. . . Γn ⊢ v : Ln

!
Γ ⊢ v : [L1, . . . , Ln]

Γ ⊢ t : [M⊸N] ∆ ⊢ s : M
@

Γ ⊢ ts : N

Idea: A term t : [L, L′, L′] can be used once as a data of type L, twice as a data of type L′.

Rmk: The constructor for multi types (rule !) can be used only by values!

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 11 / 37

A third symptom that Plotkin’s CbV is sick: denotational semantics. (1 of 2)

[Ehr12] defined a non-idempotent intersection type system for Plotkin’s CbV λ-calculus.

Linear types L ::= M ⊸ N Multi types M,N ::= [L1, . . . , Ln] n ≥ 0

Idea: [L, L′, L′] ≈ L ∧ L′ ∧ L′ ̸= L ∧ L′ (commutative, associative, non-idempotent ∧).

ax
x : [L] ⊢ x : L

Γ, x : M ⊢ t : N
λ

Γ ⊢ λx.t : M⊸N

Γ1 ⊢ v : L1
n≥0. . . Γn ⊢ v : Ln

!
Γ ⊢ v : [L1, . . . , Ln]

Γ ⊢ t : [M⊸N] ∆ ⊢ s : M
@

Γ ⊢ ts : N

Idea: A term t : [L, L′, L′] can be used once as a data of type L, twice as a data of type L′.

Rmk: The constructor for multi types (rule !) can be used only by values!

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 11 / 37

A third symptom that Plotkin’s CbV is sick: denotational semantics. (2 of 2)

Non-idempotent intersection types define a denotational model: relational semantics

JtKx⃗ = {(Γ,M) | Γ ⊢ t : M is derivable}

Theorem (Invariance, [Ehr12])

If t →βv u then JtKx⃗ = JuKx⃗ .

Theorem (Correctness, [Ehr12])

If JtKx⃗ ̸= ∅ then t is normalizing for “weak” βv -reduction (not reducing under λ’s).

The converse (completeness) fail!

Jδ1K = ∅ = Jδ3K (and JδδK = ∅ too!)

but δ1 and δ3 are βv -normal, while δδ is βv -divergent!

Rmk: Not only in relational semantics but also in other denotational models of CbV!

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 12 / 37

A third symptom that Plotkin’s CbV is sick: denotational semantics. (2 of 2)

Non-idempotent intersection types define a denotational model: relational semantics

JtKx⃗ = {(Γ,M) | Γ ⊢ t : M is derivable}

Theorem (Invariance, [Ehr12])

If t →βv u then JtKx⃗ = JuKx⃗ .

Theorem (Correctness, [Ehr12])

If JtKx⃗ ̸= ∅ then t is normalizing for “weak” βv -reduction (not reducing under λ’s).

The converse (completeness) fail!

Jδ1K = ∅ = Jδ3K (and JδδK = ∅ too!)

but δ1 and δ3 are βv -normal, while δδ is βv -divergent!

Rmk: Not only in relational semantics but also in other denotational models of CbV!

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 12 / 37

A third symptom that Plotkin’s CbV is sick: denotational semantics. (2 of 2)

Non-idempotent intersection types define a denotational model: relational semantics

JtKx⃗ = {(Γ,M) | Γ ⊢ t : M is derivable}

Theorem (Invariance, [Ehr12])

If t →βv u then JtKx⃗ = JuKx⃗ .

Theorem (Correctness, [Ehr12])

If JtKx⃗ ̸= ∅ then t is normalizing for “weak” βv -reduction (not reducing under λ’s).

The converse (completeness) fail!

Jδ1K = ∅ = Jδ3K (and JδδK = ∅ too!)

but δ1 and δ3 are βv -normal, while δδ is βv -divergent!

Rmk: Not only in relational semantics but also in other denotational models of CbV!

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 12 / 37

Summing up: a mismatch between syntax and semantics

In Plotkin’s CbV λ-calculus there is a mismatch between syntax and semantics.

There are terms, such as

δ1 := (λx .δ)(xx)δ δ3 := δ((λx .δ)(xx))

that are βv -normal but their semantics is the same as δδ, which is βv -divergent!

semantics: context equivalence, solvability, denotational models, . . .

Somehow, in Plotkin’s CbV λ-calculus, βv -reduction is “not enough”.

Can we extend βv so that δ1 and δ3 are divergent?

But we want to keep a CbV discipline:

(λx .I)(δδ) is βv -divergent (but β-normalizing)

Idea: Let us see what happens in CbV from a proof-theoretic viewpoint (Curry-Howard).

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 13 / 37

Summing up: a mismatch between syntax and semantics

In Plotkin’s CbV λ-calculus there is a mismatch between syntax and semantics.

There are terms, such as

δ1 := (λx .δ)(xx)δ δ3 := δ((λx .δ)(xx))

that are βv -normal but their semantics is the same as δδ, which is βv -divergent!

semantics: context equivalence, solvability, denotational models, . . .

Somehow, in Plotkin’s CbV λ-calculus, βv -reduction is “not enough”.

Can we extend βv so that δ1 and δ3 are divergent?

But we want to keep a CbV discipline:

(λx .I)(δδ) is βv -divergent (but β-normalizing)

Idea: Let us see what happens in CbV from a proof-theoretic viewpoint (Curry-Howard).

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 13 / 37

Summing up: a mismatch between syntax and semantics

In Plotkin’s CbV λ-calculus there is a mismatch between syntax and semantics.

There are terms, such as

δ1 := (λx .δ)(xx)δ δ3 := δ((λx .δ)(xx))

that are βv -normal but their semantics is the same as δδ, which is βv -divergent!

semantics: context equivalence, solvability, denotational models, . . .

Somehow, in Plotkin’s CbV λ-calculus, βv -reduction is “not enough”.

Can we extend βv so that δ1 and δ3 are divergent?

But we want to keep a CbV discipline:

(λx .I)(δδ) is βv -divergent (but β-normalizing)

Idea: Let us see what happens in CbV from a proof-theoretic viewpoint (Curry-Howard).

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 13 / 37

What I learned from Thomas when I was his PhD student

T: In the eternal fight between
syntax and semantics, the
semantics always wins.

G: I see.

T: Use linear logic and its
semantics as a guideline.

G: Thank you!

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 14 / 37

Outline

1 What is Call-by-Value?

2 What is Wrong with Plotkin’s Call-by-Value?

3 A Linear Logic Perspective to Call-by-Value

4 Restoring Call-by-Value thanks to Linear Logic

5 Conclusions

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 15 / 37

The role of linear logic with respect to λ-calculi

Girard’s linear logic (1987) provides new concepts and tools to study λ-calculi:
1 denotational models of linear logic provides denotational models for λ-calculi;
2 clear notion of resource and linear consumption

f : A⊸ B ≈ f consumes a value of type A and transforms it into a value of type B;
3 quantitative analysis of computation

▶ semantic tools to study execution time (De Carvalho et al.));
▶ “compatible” with cost models (Accattoli et al.).

4 . . .

LL also hints how to modify syntax and dynamics of λ-calculi to have “good properties”.

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 16 / 37

The role of linear logic with respect to λ-calculi

Girard’s linear logic (1987) provides new concepts and tools to study λ-calculi:
1 denotational models of linear logic provides denotational models for λ-calculi;
2 clear notion of resource and linear consumption

f : A⊸ B ≈ f consumes a value of type A and transforms it into a value of type B;
3 quantitative analysis of computation

▶ semantic tools to study execution time (De Carvalho et al.));
▶ “compatible” with cost models (Accattoli et al.).

4 . . .

LL also hints how to modify syntax and dynamics of λ-calculi to have “good properties”.

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 16 / 37

The role of linear logic with respect to λ-calculi

Girard’s linear logic (1987) provides new concepts and tools to study λ-calculi:
1 denotational models of linear logic provides denotational models for λ-calculi;
2 clear notion of resource and linear consumption

f : A⊸ B ≈ f consumes a value of type A and transforms it into a value of type B;
3 quantitative analysis of computation

▶ semantic tools to study execution time (De Carvalho et al.));
▶ “compatible” with cost models (Accattoli et al.).

4 . . .

LL also hints how to modify syntax and dynamics of λ-calculi to have “good properties”.

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 16 / 37

The role of linear logic with respect to λ-calculi

Girard’s linear logic (1987) provides new concepts and tools to study λ-calculi:
1 denotational models of linear logic provides denotational models for λ-calculi;
2 clear notion of resource and linear consumption

f : A⊸ B ≈ f consumes a value of type A and transforms it into a value of type B;
3 quantitative analysis of computation

▶ semantic tools to study execution time (De Carvalho et al.));
▶ “compatible” with cost models (Accattoli et al.).

4 . . .

LL also hints how to modify syntax and dynamics of λ-calculi to have “good properties”.

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 16 / 37

The role of linear logic with respect to λ-calculi

Girard’s linear logic (1987) provides new concepts and tools to study λ-calculi:
1 denotational models of linear logic provides denotational models for λ-calculi;
2 clear notion of resource and linear consumption

f : A⊸ B ≈ f consumes a value of type A and transforms it into a value of type B;
3 quantitative analysis of computation

▶ semantic tools to study execution time (De Carvalho et al.));
▶ “compatible” with cost models (Accattoli et al.).

4 . . .

LL also hints how to modify syntax and dynamics of λ-calculi to have “good properties”.

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 16 / 37

The Curry-Howard-Girard correspondence

Logic Computer Science

formula ↭ type

proof ↭ program

cut-elimination ↭ evaluation

coherence ↭ termination

different encodings of ↭ different evaluation mechanisms
intuitionistic arrow in LL

⇝ Tools from intuitionistic linear logic (ILL) can be used to study properties of:

call-by-name evaluation via Girard’s translation (·)N,
call-by-value evaluation via Girard’s translation (·)V.

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 17 / 37

The Curry-Howard-Girard correspondence

Logic Computer Science

formula ↭ type

proof ↭ program

cut-elimination ↭ evaluation

coherence ↭ termination

different encodings of ↭ different evaluation mechanisms
intuitionistic arrow in LL

⇝ Tools from intuitionistic linear logic (ILL) can be used to study properties of:

call-by-name evaluation via Girard’s translation (·)N,
call-by-value evaluation via Girard’s translation (·)V.

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 17 / 37

The Curry-Howard-Girard correspondence

Logic Computer Science

formula ↭ type

proof ↭ program

cut-elimination ↭ evaluation

coherence ↭ termination

different encodings of ↭ different evaluation mechanisms
intuitionistic arrow in LL

⇝ Tools from intuitionistic linear logic (ILL) can be used to study properties of:

call-by-name evaluation via Girard’s translation (·)N,
call-by-value evaluation via Girard’s translation (·)V.

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 17 / 37

The two Girard’s translations of IL into ILL (1987)

well-known translation (·)N “boring” translation (·)V

X N = X X V = X

(A → B)N = !AN ⊸ BN (A → B)V = !AV ⊸ !BV

(Γ ⊢ A)N = !ΓN ⊢ AN (Γ ⊢ A)V = !ΓV ⊢ !AV

IL

(·)N

**

(·)V

44 ILL (and then proof-nets)

simply typed Λ = IL (via Curry-Howard)

(untyped) Λ = IL + unique atomic type o + type identity o=o→o

(untyped) Λ

(·)N

o=!o⊸o **

(·)V
o=!o⊸!o

44 ILL (and then proof-nets)

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 18 / 37

The two Girard’s translations of IL into ILL (1987)

well-known translation (·)N “boring” translation (·)V

X N = X X V = X

(A → B)N = !AN ⊸ BN (A → B)V = !AV ⊸ !BV

(Γ ⊢ A)N = !ΓN ⊢ AN (Γ ⊢ A)V = !ΓV ⊢ !AV

IL

(·)N

**

(·)V

44 ILL (and then proof-nets)

simply typed Λ = IL (via Curry-Howard)

(untyped) Λ = IL + unique atomic type o + type identity o=o→o

(untyped) Λ

(·)N

o=!o⊸o **

(·)V
o=!o⊸!o

44 ILL (and then proof-nets)

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 18 / 37

Girard’s first translation: (·)N

X N = X

(A → B)N = !AN ⊸ BN

(Γ ⊢ A)N = !ΓN ⊢ AN

(natural deduction for IL) (sequent calculus for ILL)

ax
x :A ⊢ x :A ⇝

ax
AN ⊢ AN

der
!AN ⊢ AN

Γ, x :A ⊢ M :B
→i

Γ ⊢ λx M :A → B
⇝

!ΓN, !AN ⊢ BN

`
!ΓN ⊢ !AN ⊸ BN

Γ ⊢ M :A → B ∆ ⊢ N :A
→e

Γ,∆ ⊢ MN :B
⇝

!ΓN ⊢ !AN ⊸ BN

!∆N ⊢ AN
!

!∆N ⊢ !AN
ax

BN ⊢ BN
⊗

!∆N, !AN ⊸ BN ⊢ BN

cut
!ΓN, !∆N ⊢ BN

The translation (·)N puts a ! in front of every formula on the left-hand side of ⊢
⇝ the translation of the structural rules is obvious.

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 19 / 37

Girard’s first translation: (·)N

X N = X

(A → B)N = !AN ⊸ BN

(Γ ⊢ A)N = !ΓN ⊢ AN

(natural deduction for IL) (sequent calculus for ILL)

ax
x :A ⊢ x :A ⇝

ax
AN ⊢ AN

der
!AN ⊢ AN

Γ, x :A ⊢ M :B
→i

Γ ⊢ λx M :A → B
⇝

!ΓN, !AN ⊢ BN

`
!ΓN ⊢ !AN ⊸ BN

Γ ⊢ M :A → B ∆ ⊢ N :A
→e

Γ,∆ ⊢ MN :B
⇝

!ΓN ⊢ !AN ⊸ BN

!∆N ⊢ AN
!

!∆N ⊢ !AN
ax

BN ⊢ BN
⊗

!∆N, !AN ⊸ BN ⊢ BN

cut
!ΓN, !∆N ⊢ BN

The translation (·)N puts a ! in front of every formula on the left-hand side of ⊢
⇝ the translation of the structural rules is obvious.

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 19 / 37

Girard’s second (“boring”) translation: (·)V

X V = X

(A → B)V = !AV ⊸ !BV

(Γ ⊢ A)V = !ΓV ⊢ !AV

(natural deduction for IL) (sequent calculus for ILL)

ax
x :A ⊢ x :A ⇝ ax

!AV ⊢ !AV

Γ, x :A ⊢ M :B
→i

Γ ⊢ λx M :A → B
⇝

!ΓV, !AV ⊢ !BV

`
!ΓV ⊢ !AV ⊸ !BV

!
!ΓV ⊢ !(!AV ⊸ !BV)

Γ ⊢ M :A → B ∆ ⊢ N :A
→e

Γ,∆ ⊢ MN :B
⇝

!ΓV ⊢ !(!AV ⊸ !BV)

!∆V ⊢ !AV
ax

!BV ⊢ !BV
⊗

!∆V, !AV ⊸ !BV ⊢ !BV

der
!∆V, !(!AV ⊸ !BV) ⊢ !BV

cut
!ΓV, !∆V ⊢ !BV

The translation (·)V puts a ! in front of every formula on the left-hand side of ⊢
⇝ the translation of the structural rules is obvious.

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 20 / 37

Girard’s second (“boring”) translation: (·)V

X V = X

(A → B)V = !AV ⊸ !BV

(Γ ⊢ A)V = !ΓV ⊢ !AV

(natural deduction for IL) (sequent calculus for ILL)

ax
x :A ⊢ x :A ⇝ ax

!AV ⊢ !AV

Γ, x :A ⊢ M :B
→i

Γ ⊢ λx M :A → B
⇝

!ΓV, !AV ⊢ !BV

`
!ΓV ⊢ !AV ⊸ !BV

!
!ΓV ⊢ !(!AV ⊸ !BV)

Γ ⊢ M :A → B ∆ ⊢ N :A
→e

Γ,∆ ⊢ MN :B
⇝

!ΓV ⊢ !(!AV ⊸ !BV)

!∆V ⊢ !AV
ax

!BV ⊢ !BV
⊗

!∆V, !AV ⊸ !BV ⊢ !BV

der
!∆V, !(!AV ⊸ !BV) ⊢ !BV

cut
!ΓV, !∆V ⊢ !BV

The translation (·)V puts a ! in front of every formula on the left-hand side of ⊢
⇝ the translation of the structural rules is obvious.

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 20 / 37

An example: from IL (natural deduction) . . .

π =

ax
a :A ⊢ a :A

w
a :A, c :C ⊢ a :A

→i
a :A ⊢ λc a :C → A

ax
x :B → C ⊢ x :B → C

ax
b :B ⊢ b :B

→e
b :B, x :B → C ⊢ xb :C

→e

a :A, b :B, x :B → C ⊢ (λc a)(xb) :A

↓cut

nf(π) =

ax
a :A ⊢ a :A

w
a :A, b :B,⊢ a :A

w
a :A, b :B, x :B → C ⊢ a :A

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 21 / 37

An example: from IL (natural deduction) . . .

π =

ax
a :A ⊢ a :A

w
a :A, c :C ⊢ a :A

→i
a :A ⊢ λc a :C → A

ax
x :B → C ⊢ x :B → C

ax
b :B ⊢ b :B

→e
b :B, x :B → C ⊢ xb :C

→e

a :A, b :B, x :B → C ⊢ (λc a)(xb) :A

↓cut

nf(π) =

ax
a :A ⊢ a :A

w
a :A, b :B,⊢ a :A

w
a :A, b :B, x :B → C ⊢ a :A

(λc a)(xb) →β a

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 21 / 37

An example: from IL (natural deduction) . . .

int. logic (IL):

Curry−Howard

��

π
cut
∗//

(·)

��

nf(π)

(·)

��
λ-calculus: π

β

∗// nf(π) = nf(π)

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 21 / 37

An example: . . . to ILL via (·)N

πN =
ax

A ⊢ A
der

!A ⊢ A
w

!A, !C ⊢ A `
!A ⊢ !C ⊸ A

ax
!B ⊸ C ⊢ !B ⊸ C

der
!(!B ⊸ C) ⊢ !B ⊸ C

ax
B ⊢ B

der
!B ⊢ B

!
!B ⊢ !B

ax
C ⊢ C

⊗
!B, !B ⊸ C ⊢ C

cut
!B, !(!B ⊸ C) ⊢ C

!
!B, !(!B ⊸ C) ⊢ !C

ax
A ⊢ A

⊗
!C ⊸ A, !B, !(!B ⊸ C) ⊢ A

cut
a :!A, b :!B, x :!(!B ⊸ C) ⊢ (λc a)(xb) :A

cut↓+

nf(πN) =

ax
a :A ⊢ a :A

der
a :!A ⊢ a :A

w
a :!A, b :!B,⊢ a :A

w
a :!A, b :!B, x :!(!B ⊸ C) ⊢ a :A

= (nf(π))N

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 22 / 37

An example: . . . to ILL via (·)N

intuit. logic (IL):

(·)N

��

π
cut
∗//

(·)N

��

nf(π)

(·)N

��
intuit. LL (ILL): πN

cut
∗// nf(πN) = (nf(π))N

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 22 / 37

An example: . . . to ILL via (·)N

πN =
ax

A ⊢ A
der

!A ⊢ A
w

!A, !C ⊢ A `
!A ⊢ !C ⊸ A

ax
!B ⊸ C ⊢ !B ⊸ C

der
!(!B ⊸ C) ⊢ !B ⊸ C

ax
B ⊢ B

der
!B ⊢ B

!
!B ⊢ !B

ax
C ⊢ C

⊗
!B, !B ⊸ C ⊢ C

cut
!B, !(!B ⊸ C) ⊢ C

!
!B, !(!B ⊸ C) ⊢ !C

ax
A ⊢ A

⊗
!C ⊸ A, !B, !(!B ⊸ C) ⊢ A

cut
a :!A, b :!B, x :!(!B ⊸ C) ⊢ (λc a)(xb) :A

cut↓+

nf(πN) =

ax
a :A ⊢ a :A

der
a :!A ⊢ a :A

w
a :!A, b :!B,⊢ a :A

w
a :!A, b :!B, x :!(!B ⊸ C) ⊢ a :A

= (nf(π))N

(λc a)(xb) →β a

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 22 / 37

An example: . . . to ILL via (·)V

πV =

ax
!A ⊢ !A

w
!A, !C ⊢ !A `

!A ⊢ !C ⊸ !A
!

!A ⊢ !(!C ⊸ !A)

ax
!(!B ⊸ !C) ⊢ !(!B ⊸ !C)

ax
!B ⊢ !B

ax
!C ⊢ !C

⊗
!B, !B ⊸ !C ⊢ !C

der
!B, !(!B ⊸ !C) ⊢ C

cut
!B, !(!B ⊸ !C) ⊢ !C

ax
A ⊢ A

⊗
!C ⊸ A, !B, !(!B → C) ⊢ A

der
!(!C ⊸ A), !B, !(!B ⊸ !C) ⊢ A

cut
a :!A, b :!B, x :!(!B ⊸ !C) ⊢ (λc a)(xb) :A

cut↓+

nf(πV) =
ax

!B ⊢ !B

ax
!A ⊢ !A

w
!C , !A ⊢ !A

⊗
!A, !B, !B ⊸ !C ⊢ !A

der
a :!A, b :!B, x :!(!B ⊸ !C) ⊢ a[xb/c] :!A

̸=
ax

!A ⊢ !A
w

!B, !A ⊢ !A
w

a :!A, b :!B, x :!(!B ⊸ !C) ⊢ a :!A

= (nf(π))V

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 23 / 37

An example: . . . to ILL via (·)V

intuit. logic (IL):

(·)V

��

π
cut
∗//

(·)V

��

nf(π)

(·)V

��
intuit. LL (ILL): πV

cut
∗// nf(πV) ̸= (nf(π))V

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 23 / 37

An example: . . . to ILL via (·)V

πV =

ax
!A ⊢ !A

w
!A, !C ⊢ !A `

!A ⊢ !C ⊸ !A
!

!A ⊢ !(!C ⊸ !A)

ax
!(!B ⊸ !C) ⊢ !(!B ⊸ !C)

ax
!B ⊢ !B

ax
!C ⊢ !C

⊗
!B, !B ⊸ !C ⊢ !C

der
!B, !(!B ⊸ !C) ⊢ C

cut
!B, !(!B ⊸ !C) ⊢ !C

ax
A ⊢ A

⊗
!C ⊸ A, !B, !(!B → C) ⊢ A

der
!(!C ⊸ A), !B, !(!B ⊸ !C) ⊢ A

cut
a :!A, b :!B, x :!(!B ⊸ !C) ⊢ (λc a)(xb) :A

cut↓+

nf(πV) =
ax

!B ⊢ !B

ax
!A ⊢ !A

w
!C , !A ⊢ !A

⊗
!A, !B, !B ⊸ !C ⊢ !A

der
a :!A, b :!B, x :!(!B ⊸ !C) ⊢ a[xb/c] :!A

̸=
ax

!A ⊢ !A
w

!B, !A ⊢ !A
w

a :!A, b :!B, x :!(!B ⊸ !C) ⊢ a :!A

= (nf(π))V

(λc a)(xb) →βv a[xb/c] (i.e. let c :=xb in a) ≈ (λc a)(xb) . . . boring (according to Girard).

But a[xb/c] is βv -normal!

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 23 / 37

Call-by-name vs. call-by-value from a Linear Logic point of view

In the λ-calculus there are two evaluation mechanisms:

call-by-name (CbN, β-reduction): no restriction in firing a β-redex;

call-by-value (CbV, βv -reduction): a β-redex (λx t)s can be fired only if s is a value.

ILL (and proof-nets) cut-elimination simulates

{
β-reduction via the translation (·)N

βv -reduction via the translation (·)V

via (·)N every argument is translated by a box
⇝ every argument can be duplicated or discarded (CbN discipline);

via (·)V every (and only) abstraction or variable is translated by a box
⇝ only abstraction or variable can be duplicated or discarded (CbV discipline).

The two Girard’s logical translations can explain the two different evaluation mechanisms
inside the same setting, bringing them into the scope of the Curry-Howard isomorphism.

Call-by-name, call-by-value, call-by-need, and the linear lambda calculus. John
Maraist, Martin Odersky, David Turner, and Philip Wadler. MFPS, 1995.

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 24 / 37

Call-by-name vs. call-by-value from a Linear Logic point of view

In the λ-calculus there are two evaluation mechanisms:

call-by-name (CbN, β-reduction): no restriction in firing a β-redex;

call-by-value (CbV, βv -reduction): a β-redex (λx t)s can be fired only if s is a value.

ILL (and proof-nets) cut-elimination simulates

{
β-reduction via the translation (·)N

βv -reduction via the translation (·)V

via (·)N every argument is translated by a box
⇝ every argument can be duplicated or discarded (CbN discipline);

via (·)V every (and only) abstraction or variable is translated by a box
⇝ only abstraction or variable can be duplicated or discarded (CbV discipline).

The two Girard’s logical translations can explain the two different evaluation mechanisms
inside the same setting, bringing them into the scope of the Curry-Howard isomorphism.

Call-by-name, call-by-value, call-by-need, and the linear lambda calculus. John
Maraist, Martin Odersky, David Turner, and Philip Wadler. MFPS, 1995.

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 24 / 37

Call-by-name vs. call-by-value from a Linear Logic point of view

In the λ-calculus there are two evaluation mechanisms:

call-by-name (CbN, β-reduction): no restriction in firing a β-redex;

call-by-value (CbV, βv -reduction): a β-redex (λx t)s can be fired only if s is a value.

ILL (and proof-nets) cut-elimination simulates

{
β-reduction via the translation (·)N

βv -reduction via the translation (·)V

via (·)N every argument is translated by a box
⇝ every argument can be duplicated or discarded (CbN discipline);

via (·)V every (and only) abstraction or variable is translated by a box
⇝ only abstraction or variable can be duplicated or discarded (CbV discipline).

The two Girard’s logical translations can explain the two different evaluation mechanisms
inside the same setting, bringing them into the scope of the Curry-Howard isomorphism.

Call-by-name, call-by-value, call-by-need, and the linear lambda calculus. John
Maraist, Martin Odersky, David Turner, and Philip Wadler. MFPS, 1995.

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 24 / 37

Outline

1 What is Call-by-Value?

2 What is Wrong with Plotkin’s Call-by-Value?

3 A Linear Logic Perspective to Call-by-Value

4 Restoring Call-by-Value thanks to Linear Logic

5 Conclusions

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 25 / 37

What can LL say about the issues in Plotkin’s CbV?

The terms
δ1 := (λx .δ)(xx)δ δ3 := δ((λx .δ)(xx))

are βv -normal because the β-redex (but not βv -redex) (λx)(xx) is stuck.
⇝ The β-redex prevents the two δ’s from interacting!

But if we translate δ1 and δ3 into ILL proof-nets, the two δ’s can interact.
⇝ The translations of δ1 and δ3 into ILL proof-nets are diverging!

ILL is suggesting a way to extend βv -reduction in a CbV setting.

Question: How can we internalize ILL behavior into a calculus?

Answer: There are at least two solutions.

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 26 / 37

What can LL say about the issues in Plotkin’s CbV?

The terms
δ1 := (λx .δ)(xx)δ δ3 := δ((λx .δ)(xx))

are βv -normal because the β-redex (but not βv -redex) (λx)(xx) is stuck.
⇝ The β-redex prevents the two δ’s from interacting!

But if we translate δ1 and δ3 into ILL proof-nets, the two δ’s can interact.
⇝ The translations of δ1 and δ3 into ILL proof-nets are diverging!

ILL is suggesting a way to extend βv -reduction in a CbV setting.

Question: How can we internalize ILL behavior into a calculus?

Answer: There are at least two solutions.

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 26 / 37

What can LL say about the issues in Plotkin’s CbV?

The terms
δ1 := (λx .δ)(xx)δ δ3 := δ((λx .δ)(xx))

are βv -normal because the β-redex (but not βv -redex) (λx)(xx) is stuck.
⇝ The β-redex prevents the two δ’s from interacting!

But if we translate δ1 and δ3 into ILL proof-nets, the two δ’s can interact.
⇝ The translations of δ1 and δ3 into ILL proof-nets are diverging!

ILL is suggesting a way to extend βv -reduction in a CbV setting.

Question: How can we internalize ILL behavior into a calculus?

Answer: There are at least two solutions.

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 26 / 37

Solution 1: Value Substitution Calculus [AccPao12]

Terms: s, t, u ::= v | tu | t[u/x] Values: v ::= x | λx .t
Substitution contexts: L ::= [t1/x1] . . . [tn/xn]

Reductions: (λx .t)Ls →m t[s/x]L t[vL/x] →e t{v/x}L

1 βv -reduction can be simulated into VSC.

(λx .t)v →m t[v/x] →e t{v/x}

2 VSC extends βv -reduction:

δ1 = (λx .δ)(xx)δ →m δ[xx/x]δ →m (zz)[δ/z][xx/x] →e δδ[xx/x] → · · ·
δ3 = δ((λx .δ)(xx)) →m δ(δ[xx/x]) →m (zz)[δ[xx/x]/z] →e δδ[xx/x] → · · ·

In VSC, δ1 and δ3 are divergent as δδ!

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 27 / 37

Solution 1: Value Substitution Calculus [AccPao12]

Terms: s, t, u ::= v | tu | t[u/x] Values: v ::= x | λx .t
Substitution contexts: L ::= [t1/x1] . . . [tn/xn]

Reductions: (λx .t)Ls →m t[s/x]L t[vL/x] →e t{v/x}L

1 βv -reduction can be simulated into VSC.

(λx .t)v →m t[v/x] →e t{v/x}

2 VSC extends βv -reduction:

δ1 = (λx .δ)(xx)δ →m δ[xx/x]δ →m (zz)[δ/z][xx/x] →e δδ[xx/x] → · · ·
δ3 = δ((λx .δ)(xx)) →m δ(δ[xx/x]) →m (zz)[δ[xx/x]/z] →e δδ[xx/x] → · · ·

In VSC, δ1 and δ3 are divergent as δδ!

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 27 / 37

Solution 2: Shuffling Calculus [CarrGue14]

Terms: s, t, u ::= v | tu Values: v ::= x | λx .t

βv -reduction: (λx .t)v →βv t{v/x}
Shuffling reductions: (λx .t)su →σ1 (λx .tu)s v((λx .t)s) →σ3 (λx .vt)s

1 The shuffling calculus extends βv -reduction:

δ1 = (λx .δ)(xx)δ →σ1 (λx .δδ)(xx) →βv (λx .δδ)(xx) →βv · · ·
δ3 = δ((λx .δ)(xx)) →σ3 (λx .δδ)(xx) →βv (λx .δδ)(xx) →βv · · ·

In the shuffling calculus, δ1 and δ3 are divergent as δδ!

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 28 / 37

Solution 2: Shuffling Calculus [CarrGue14]

Terms: s, t, u ::= v | tu Values: v ::= x | λx .t

βv -reduction: (λx .t)v →βv t{v/x}
Shuffling reductions: (λx .t)su →σ1 (λx .tu)s v((λx .t)s) →σ3 (λx .vt)s

1 The shuffling calculus extends βv -reduction:

δ1 = (λx .δ)(xx)δ →σ1 (λx .δδ)(xx) →βv (λx .δδ)(xx) →βv · · ·
δ3 = δ((λx .δ)(xx)) →σ3 (λx .δδ)(xx) →βv (λx .δδ)(xx) →βv · · ·

In the shuffling calculus, δ1 and δ3 are divergent as δδ!

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 28 / 37

VSC vs. Shuffling: the importance of being (linearly) logical

Both VSC and Shuffling (Shuf) calculi are inspired by ILL proof-nets.
It turns out that they are “essentially the same” (termination equivalence)

Theorem (termination equivalence, [AccGue16])

Let t be a term: t is VSC-normalizing iff t is Shuf-normalizing.

Not ad hoc: these settings are termination equivalent to other extensions of Plotkin’s one

fireball calculus (Paolini & Ronchi Della Rocca, 1999; Grégoire & Leroy, 2002);

CbV λ̄µµ̃-calculus (Curien & Herbelin, 2000);

. . .

(Introduced with different motivations: implementative, semantic, proof-theoretic, etc.)

Just different syntactic incarnations of the “same” CbV calculus (extending Plotkin’s one).

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 29 / 37

VSC vs. Shuffling: the importance of being (linearly) logical

Both VSC and Shuffling (Shuf) calculi are inspired by ILL proof-nets.
It turns out that they are “essentially the same” (termination equivalence)

Theorem (termination equivalence, [AccGue16])

Let t be a term: t is VSC-normalizing iff t is Shuf-normalizing.

Not ad hoc: these settings are termination equivalent to other extensions of Plotkin’s one

fireball calculus (Paolini & Ronchi Della Rocca, 1999; Grégoire & Leroy, 2002);

CbV λ̄µµ̃-calculus (Curien & Herbelin, 2000);

. . .

(Introduced with different motivations: implementative, semantic, proof-theoretic, etc.)

Just different syntactic incarnations of the “same” CbV calculus (extending Plotkin’s one).

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 29 / 37

Restoring what was wrong in Plotkin’s CbV!

In these CbV extensions we restore the good properties missing in Plotkin’s CbV calculus.

1 Contextual equivalence in VSC and Shuf is the same as in Plotkin’s calculus,
but now δ1 and δ3 are CbV-divergent as δδ.

2 Solvability in VSC and Shuf is the same as in Plotkin’s calculus,
but now we have an internal operational characterization of CbV solvability

Theorem [AccPao12, CarrGue14]

1 t is CbV-solvable iff t is normalizing for weak CbV-reduction.

2 Every CbV-normalizing term is CbV-solvable, but the converse fails (e.g. Yv).

3 Denotational semantics in the VSC and Shuf is the same as in Plotkin’s calculus,
but now we also have completeness

Theorem (Correctness and Completeness [CarrGue12])

JtKx⃗ ̸= ∅ iff t is normalizing for “weak” CbV-reduction (not reducing under λ’s).

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 30 / 37

Restoring what was wrong in Plotkin’s CbV!

In these CbV extensions we restore the good properties missing in Plotkin’s CbV calculus.

1 Contextual equivalence in VSC and Shuf is the same as in Plotkin’s calculus,
but now δ1 and δ3 are CbV-divergent as δδ.

2 Solvability in VSC and Shuf is the same as in Plotkin’s calculus,
but now we have an internal operational characterization of CbV solvability

Theorem [AccPao12, CarrGue14]

1 t is CbV-solvable iff t is normalizing for weak CbV-reduction.

2 Every CbV-normalizing term is CbV-solvable, but the converse fails (e.g. Yv).

3 Denotational semantics in the VSC and Shuf is the same as in Plotkin’s calculus,
but now we also have completeness

Theorem (Correctness and Completeness [CarrGue12])

JtKx⃗ ̸= ∅ iff t is normalizing for “weak” CbV-reduction (not reducing under λ’s).

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 30 / 37

Restoring what was wrong in Plotkin’s CbV!

In these CbV extensions we restore the good properties missing in Plotkin’s CbV calculus.

1 Contextual equivalence in VSC and Shuf is the same as in Plotkin’s calculus,
but now δ1 and δ3 are CbV-divergent as δδ.

2 Solvability in VSC and Shuf is the same as in Plotkin’s calculus,
but now we have an internal operational characterization of CbV solvability

Theorem [AccPao12, CarrGue14]

1 t is CbV-solvable iff t is normalizing for weak CbV-reduction.

2 Every CbV-normalizing term is CbV-solvable, but the converse fails (e.g. Yv).

3 Denotational semantics in the VSC and Shuf is the same as in Plotkin’s calculus,
but now we also have completeness

Theorem (Correctness and Completeness [CarrGue12])

JtKx⃗ ̸= ∅ iff t is normalizing for “weak” CbV-reduction (not reducing under λ’s).

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 30 / 37

Outline

1 What is Call-by-Value?

2 What is Wrong with Plotkin’s Call-by-Value?

3 A Linear Logic Perspective to Call-by-Value

4 Restoring Call-by-Value thanks to Linear Logic

5 Conclusions

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 31 / 37

Summing up

1 Plotkin’s CbV λ-calculus can be extended by taking inspiration from LL.

2 The extensions are “conservative”: they do not change CbV semantic notions.

3 Many issues in Plotkin’s calculus are solved in these extended CbV settings.

4 We have all the ingredients to develop a theory for CbV as elegant as for CbN.

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 32 / 37

Summing up

1 Plotkin’s CbV λ-calculus can be extended by taking inspiration from LL.

2 The extensions are “conservative”: they do not change CbV semantic notions.

3 Many issues in Plotkin’s calculus are solved in these extended CbV settings.

4 We have all the ingredients to develop a theory for CbV as elegant as for CbN.

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 32 / 37

Summing up

1 Plotkin’s CbV λ-calculus can be extended by taking inspiration from LL.

2 The extensions are “conservative”: they do not change CbV semantic notions.

3 Many issues in Plotkin’s calculus are solved in these extended CbV settings.

4 We have all the ingredients to develop a theory for CbV as elegant as for CbN.

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 32 / 37

Summing up

1 Plotkin’s CbV λ-calculus can be extended by taking inspiration from LL.

2 The extensions are “conservative”: they do not change CbV semantic notions.

3 Many issues in Plotkin’s calculus are solved in these extended CbV settings.

4 We have all the ingredients to develop a theory for CbV as elegant as for CbN.

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 32 / 37

Open Question 0: Categorical Semantics for CbV

Question: CbN : CCC = CbV : X . What is X?

Partial answer: [Ehrh12] shows how to build a model for CbV from a model of LL.

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 33 / 37

Open Question 1: A more general framework!

The existence of two separate paradigms (CbN and CbV λ-calculi) is troubling:

it makes each language appear arbitrary (a unified language is more canonical);

each time we create a new style of semantics (e.g. operational semantics,
continuations, Scott semantics, game semantics, etc.) we always need to do it twice.

Question: Is there a general calculus containing both CbN and CbV?

In this setting we compare CbN and CbV λ-calculi

in the same rewriting system, and

with the same denotational semantics,

obtaining CbN and CbV as fragments of this setting via translations.

Answer: [EhrGue16], [GueMan18], [BKVV20], [FagGue20], . . .

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 34 / 37

Open Question 1: A more general framework!

The existence of two separate paradigms (CbN and CbV λ-calculi) is troubling:

it makes each language appear arbitrary (a unified language is more canonical);

each time we create a new style of semantics (e.g. operational semantics,
continuations, Scott semantics, game semantics, etc.) we always need to do it twice.

Question: Is there a general calculus containing both CbN and CbV?

In this setting we compare CbN and CbV λ-calculi

in the same rewriting system, and

with the same denotational semantics,

obtaining CbN and CbV as fragments of this setting via translations.

Answer: [EhrGue16], [GueMan18], [BKVV20], [FagGue20], . . .

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 34 / 37

Open Question 2: Inhabitation

In the non-idempotent intersection type system for CbV, typability is undecidable.

Question: Is the inabitation problem decidable in CbV?

Given an typing context Γ and a multi type M, is there a term t such that

Γ ⊢ t : M is derivable?

Question bis: Same question, but in a more general framework subsuming CbV and CbN.

Answer: Yes, it is decidable an we can find all the inhabitants! [ArrKesGue23]

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 35 / 37

Open Question 2: Inhabitation

In the non-idempotent intersection type system for CbV, typability is undecidable.

Question: Is the inabitation problem decidable in CbV?

Given an typing context Γ and a multi type M, is there a term t such that

Γ ⊢ t : M is derivable?

Question bis: Same question, but in a more general framework subsuming CbV and CbN.

Answer: Yes, it is decidable an we can find all the inhabitants! [ArrKesGue23]

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 35 / 37

Open Question 2: Inhabitation

In the non-idempotent intersection type system for CbV, typability is undecidable.

Question: Is the inabitation problem decidable in CbV?

Given an typing context Γ and a multi type M, is there a term t such that

Γ ⊢ t : M is derivable?

Question bis: Same question, but in a more general framework subsuming CbV and CbN.

Answer: Yes, it is decidable an we can find all the inhabitants! [ArrKesGue23]

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 35 / 37

Open question 3: Call by Need

Question: What about Call-by-Need? Can we use LL to understand Call-by-Need?

Question bis: Is there a general framework subsuming CbV, CbN and CbNeed?

Idea: We should split the ! comonad into two:

one for duplication;

one for erasure.

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 36 / 37

Open question 3: Call by Need

Question: What about Call-by-Need? Can we use LL to understand Call-by-Need?

Question bis: Is there a general framework subsuming CbV, CbN and CbNeed?

Idea: We should split the ! comonad into two:

one for duplication;

one for erasure.

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 36 / 37

Open question 3: Call by Need

Question: What about Call-by-Need? Can we use LL to understand Call-by-Need?

Question bis: Is there a general framework subsuming CbV, CbN and CbNeed?

Idea: We should split the ! comonad into two:

one for duplication;

one for erasure.

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 36 / 37

Thank you!

Questions?

G. Guerrieri (AMU) Call-by-Value and Linear Logic TE60 2022/09/30 37 / 37

	What is Call-by-Value?
	What is Wrong with Plotkin's Call-by-Value?
	A Linear Logic Perspective to Call-by-Value
	Restoring Call-by-Value thanks to Linear Logic
	Conclusions

