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Tarski theorem

Let (X ,≤) be a complete lattice, and F be an increasing function
on X . Then the set P of all fixpoints F is a complete lattice.
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Let (X ,≤) be a complete lattice, and F be an increasing function
on X . Then the set P of all fixpoints F is a complete lattice.

µX .F (X ) =
⋂

P =
⋂

{x | F (x) ≤ x}

F (µX .F (X )) ≤ µX .F (X )
F (S) ≤ S

µX .F (X ) ≤ S
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Let (X ,≤) be a complete lattice, and F be an increasing function
on X . Then the set P of all fixpoints F is a complete lattice.

µX .F (X ) =
⋂

P =
⋂

{x | F (x) ≤ x}

νX .F (X ) =
⋃

P =
⋃

{x | F (x) ≥ x}

∆ ⊢ F (µX .F (X )), Γ

∆ ⊢ µX .F (X ), Γ

F (S) ⊢ S

µX .F (X ) ⊢ S

∆,F (νX .F (X )) ⊢ Γ

∆, νX .F (X ) ⊢ Γ

S ⊢ F (S)

S ⊢ νX .F (X )
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Let (X ,≤) be a complete lattice, and F be an increasing function
on X . Then the set P of all fixpoints F is a complete lattice.

µX .F (X ) =
⋂

P =
⋂

{x | F (x) ≤ x}

νX .F (X ) =
⋃

P =
⋃

{x | F (x) ≥ x}

Γ ⊢ ∆ ; ⊢ Γ⊥,∆:

⊢ F (µX .F (X )), Γ

⊢ µX .F (X ), Γ

⊢ S⊥,F (S)

⊢ S⊥, νX .F (X )
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Cut-elimination fails...

(⊤)
⊢ 0, 0,⊤

(⊤)
⊢ 0,⊤

⊢ 0, νX .X
(cut)

⊢ 0, 0, νX .X
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⊢ F (µX .F (X )), Γ

⊢ µX .F (X ), Γ

⊢ S⊥,F (S)

⊢ S⊥, νX .F (X )

↓

⊢ F (µX .F (X )), Γ

⊢ µX .F (X ), Γ

⊢ Γ,S ⊢ S⊥,F (S)

⊢ Γ, νX .F (X )
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µLL∞
1

⊢ F (µX .F (X )), Γ

⊢ µX .F (X ), Γ

⊢ S⊥,F (S)

⊢ S⊥, νX .F (X )

↓

⊢ F (µX .F (X )), Γ

⊢ µX .F (X ), Γ

⊢ Γ,S ⊢ S⊥,F (S)

⊢ Γ, νX .F (X )

↓
⊢ F (µX .F (X )), Γ

(µ)
⊢ µX .F (X ), Γ

⊢ Γ,F (νX .F (X ))
(ν)

⊢ Γ, νX .F (X )

+ a possibility to have infinite trees.

1David Baelde, Amina Doumane, Alexis Saurin: Infinitary Proof Theory: the
Multiplicative Additive Case.
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Example

nat = µX (1⊕ X )

(1)
⊢ 1

(⊕1)⊢ 1⊕ nat
(µ− fold)

⊢ nat
(⊥)

⊢ nat,⊥ ∗ ⊢ nat, nat⊥
(&)

⊢ nat,⊥& nat⊥
(ν)

∗ ⊢ nat, nat⊥
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But...

...
(ν)

⊢ νX .X
(ν)

⊢ νX .X

...
(µ)

⊢ Γ, µX .X
(µ)

⊢ Γ, µX .X
(cut)

⊢ Γ
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Validity condition

▶ An occurrence is a formula A together with an address α,
denoted as Aα.

▶ Extend the usual sub-formula with σX F →FL F (σX F ) where
σ is either ν or µ.

▶ Bβ is a FL-sub-occurrence of Aα if A →⋆
FL B and β ⪯sw α.

▶ A thread is a sequence t = (Ai )i∈ω of occurrences such that
for all i either Ai+1 is a FL-sub-occurrence of Ai or Ai = Ai+1.

▶ If t = (Ai )i∈ω is a thread we use t for the sequence obtained
by forgetting the addresses of the occurrences of t.

▶ Inf(t) is the set of formulas that occurs infinitely often in t.

▶ A valid thread t is a non-stationary thread such that
min(Inf(t)) is a ν-formula.

▶ A valid proof π is a pre-proof π such that for any infinite
branch γ = (⊢ Γi )i∈ω, there is a non stationary valid thread
t = (Ai )i>j where j ∈ ω and ∀i > j(Ai ∈ Γi ).
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Example

F = µX .(νY .(X ⊗ Y )) where G = νY .(F ⊗ Y ).

∗2 ⊢ F ∗1 ⊢ G
(⊗)

⊢ F ⊗ G
(ν)

∗1 ⊢ G
(µ)

∗2 ⊢ F
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Example

F = νX .µY .(1⊕ (X ` (Y ⊕⊥))) and
G = µY .(1⊕ (F ` (Y ⊕⊥))).

∗ ⊢ F ,G
(⊥)

⊢ F ,⊥,G
(⊕2)⊢ F ,G ⊕⊥,G `

⊢ (F ` (G ⊕⊥)),G
(⊕2)

⊢ 1⊕ (F ` (G ⊕⊥)),G
(µ)

⊢ G ,G
(ν)

∗ ⊢ F ,G
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Totality candidates on a set E

Given T ⊆ P(E ) we set

T ⊥ =
{
u′ ⊆ E | ∀u ∈ T u ∩ u′ ̸= ∅

}
Definition (Totality candidates)

T is a totality candidate for E if T = T ⊥⊥.

(Equivalently T ⊥⊥ ⊆ T , equivalently T = S⊥ for some
S ⊆ P(E ).)

Fact
▶ T is a totality candidate on E iff T ⊆ P(E ) and T = ↑T .

▶ Tot(X ) (The set of all totality candidates on E ), ordered with
⊆, is a complete lattice (it is closed under arbitrary
intersections).



16/24

Non-uniform totality spaces (NUTS)

A NUTS is a pair X = (|X |, T X ) where

▶ |X | is a set

▶ T X is a totality candidate on |X |, that is, a ↑-closed subset of
P(|X |).

t ∈ NUTS(X ,Y ) if t ∈ REL(|X |, |Y |) and

∀u ∈ T X t · u ∈ T Y

Fact
NUTS is a model of LL where the proofs are interpreted exactly as
in REL.



17/24

Interpretation of µX .F in NUTS

NUTS NUTS

REL REL

F

F
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Interpretation of µX .F in NUTS

NUTS NUTS

REL REL

F

F

F : (X ,U) 7→ (FX ,ΦU) where ΦU ∈ T (FX ).
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Interpretation of µX .F in NUTS

NUTS NUTS

REL REL

F

F

F : (X ,U) 7→ (FX ,ΦU) where ΦU ∈ T (FX ).

Assume µF exists.

g : Tot(µF ) → Tot(µF )

R 7→ ΦR
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Interpretation of µX .F in NUTS

NUTS NUTS

REL REL

F

F

F : (X ,U) 7→ (FX ,ΦU) where ΦU ∈ T (FX ).

Assume µF exists.

g : Tot(µF ) → Tot(µF )

R 7→ ΦR

By Tarski theorem, µg exists.

µF = (µF , µg).
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NUTS as a denotational model of µLL∞

u

ww
v

.... π

⊢ Γ,F [µXF/X ]
(µ)

⊢ Γ, µXF

}

��
~ = JπK

u

ww
v

.... π

⊢ Γ,F [νXF/ζ]
(ν)

⊢ Γ, νYF

}

��
~ = JπK

Interpretation of proofs:

JπKREL =
⋃

ρ∈fin(π)

JρKREL

Theorem: If π and π′ are µLL∞ proofs of Γ and π reduces to π′

by the cut-elimination rules of µLL∞, then JπK = Jπ′K.
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Validity implies totality

Theorem: If π is a valid proof of the sequent ⊢ Γ, then JπK ∈ T JΓK.
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Validity implies totality

Theorem: If π is a valid proof of the sequent ⊢ Γ, then JπK ∈ T JΓK.

The proof is similar to the proof of soundness of LKIDω in 2.

We needed to adapt the proof in two aspects:

▶ considering µLL∞ instead of LKIDω,

▶ and deal with the denotational semantics instead of Tarskian
semantics.

Adapation for µLL∞: somehow done in 3

So, basically, the main point of this proof is adapting a Tarskian soundness
theorem to a denotational semantic soundness.

2James Brotherston.Sequent Calculus Proof Systems for Inductive Def-initions.
PhD thesis, University of Edinburgh, November 2006.

3Amina Doumane. On the infinitary proof theory of logics with fixedpoints. PhD
thesis, Paris Diderot University, 2017.
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An example

A syntatic-free proof that any term of booleans has a defined
boolean value true or false

Consider 1⊕ 1 (The type of booleans).
J1⊕ 1K = ({(1, ⋆), (2, ⋆)}, T J1⊕ 1K) where

T (J1⊕ 1K) = P(|J1⊕ 1K|)\∅

For any proof π of 1⊕ 1, we have JπK ∈ T J1⊕ 1K.
Hence JπK ̸= ∅.


