### Talking with Thomas

Lorenzo Tortora de Falco Dipartimento di Matematica e Fisica Università Roma Tre

> Thomas' 60th birthday CNAM, Paris 29-30 Sept 2022

### Thomas' question:

What is the precise relation between differential nets and Linear Logic experiments (type derivations for LL)?

# Linear Logic and Differential Linear Logic: a methodological point

- the methodological approach behind the introduction of Linear Logic and Differential Linear logic is very similar
- denotational semantics gives mathematical counterparts to programming languages: in proof-theory this is the study of the mathematical invariants of the cut-elimination process
- a nice model can reveal some hidden structure of proofs and can suggest improvements of the proof system (and give new insights on Logic)
- ▶ Girard's coherent model of the typed  $\lambda$ -calculus: introduction of the exponential connectives and thus of LL proof-nets (a great novelty carried by LL)
- ► Ehrhard's finiteness spaces: introduction (by Ehrhard-Regnier) of the co-structural rules and the representation of proofs as (possibly infinite) sums of differential nets, which have both a geometric nature (as graphs) and an algebraic one (as elements of the interpretation of proofs).

#### Taylor expansion of a MELL proof-structure

MELL (DiLL and DiLL<sub>0</sub>) formulas:

$$A ::= X \mid A \otimes A \mid A \Im A \mid \bot \mid 1 \mid !A \mid ?A$$

DiLL<sub>0</sub>-nodes:



A ?c-node has  $n \ge 0$  premises of type A and one conclusion of type ?A A !-node has  $n \ge 0$  premises of type A and one conclusion of type !A.

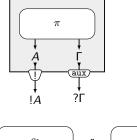
DiLL-nodes=DiLL<sub>0</sub>-nodes+boxes. MELL-nodes=DiLL<sub>0</sub>-nodes where !-nodes have arity 1 + boxes.

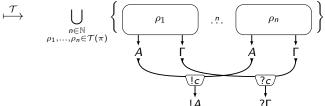
(Qualitative) Taylor expansion 
$$\mathcal{T}:$$
 MELL  $\rightarrow$   $\mathcal{P}(\text{DiLL}_0)$   $\pi$   $\mapsto$   $\mathcal{T}(\pi)$ 



#### Taylor expansion of a MELL proof-structure: example

Idea: each box is replaced by n copies of its content, recursively (for every box and every  $n \in \mathbb{N}$ )





An element of the Taylor expansion of the proof-structure  $\pi$  is itself a (resource) proof-structure and an approximation of  $\pi$ .

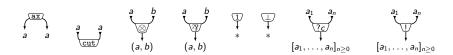
#### Experiments and interpretation of a DiLL<sub>0</sub> proof-structure

We fix an infinite set At of atoms.

Let  $|\cdot|$  be the function associating with any MELL formula A the set |A| defined by induction on A as follows:

$$|X| = |X^{\perp}| = \mathcal{A}t$$
, for any variable  $X$ ;  $|1| = |\perp| = \{*\};$   $|A \otimes B| = |A \Im B| = |A| \times |B|;$   $|!A| = |?A| = \mathcal{M}_{\mathrm{fin}}(|A|).$ 

An experiment of a DiLL<sub>0</sub> proof-structure  $\rho$  is a function (= labelling) e s.t.  $p \mapsto e(p) \in |A|$  for any edge p:A of  $\rho$ .



The relational interpretation of a DiLL<sub>0</sub> proof-structure  $\rho$  with conclusions  $p_1: A_1, \ldots, p_n: A_n$  is  $[\![\rho]\!] = \{|e|: e \text{ is an experiment of } \rho\}$ , where  $|e| = (e(p_1), \ldots, e(p_n))$  is the result of e.

#### Relational interpretation of a MELL proof-structure

For a proof-structure  $\pi$ , define  $\llbracket \pi \rrbracket = \bigcup_{\rho \in \mathcal{T}(\pi)} \llbracket \rho \rrbracket = \{ |e| : e \text{ experiment of } \pi \} ).$ 

"Most informative" points of the interpretation:  $a \in |A|$  is injective if every atom occurring in a occurs exactly twice. If  $X \subseteq |A|$ , we set  $X_{inj} = \{a \in X \mid a \text{ is injective}\}.$ 

The injective interpretation of  $\pi$  (in MELL) and  $\rho$  (in DiLL<sub>0</sub>) are  $[\![\pi]\!]_{\mathrm{inj}} = [\![\pi]\!] \cap |\, \Im\Gamma\,|_{\mathrm{inj}}$  and  $[\![\rho]\!]_{\mathrm{inj}} = [\![\rho]\!] \cap |\, \Im\Gamma\,|_{\mathrm{inj}}$ .

We have:  $[\![\pi]\!]_{\mathrm{inj}} = \bigcup_{\rho \in \mathcal{T}(\pi)} [\![\rho]\!]_{\mathrm{inj}}.$  (Most informative points: from  $[\![\pi]\!]_{\mathrm{inj}}$  one immediately recovers  $[\![\pi]\!]$ ).

There are many equivalent (up to renaming) injective points:  $a \sim_A a'$  iff there exists a bijection  $\sigma : \mathcal{A}t \to \mathcal{A}t$  such that  $a = \sigma_A(a')$ .

#### Taylor expansion: a bridge between syntax and semantics

For  $\pi$  normal (= cut-free,  $\eta$ -expanded) MELL proof-structure (or simply typed  $\lambda$ -term),  $\rho \in \mathcal{T}(\pi)$  is a canonical representative of an equivalence class of most informative points of  $\|\pi\|$ :  $\|\pi\|_{\mathrm{inj}}/\sim_{\Im\Gamma}$  is precisely  $\mathcal{T}(\pi)$ .

Proposition (Guerrieri-Pellissier-TdF, but also "folklore")

For  $\pi$  normal with conclusion  $\Gamma$ , the quotient of the identity

$$\llbracket \pi \rrbracket_{\text{inj}} = \bigcup_{\rho \in \mathcal{T}(\pi)} \llbracket \rho \rrbracket_{\text{inj}}$$

through the equivalence  $\sim_{\Im\Gamma}$  yields a bijection

$$f: \mathcal{T}(\pi) \to \llbracket \pi 
rbracket_{ ext{inj}} / \sim_{\Im\Gamma} 
ho$$
 $ho \mapsto \llbracket 
ho 
rbracket_{ ext{inj}}$ 

Remark: If  $\pi \to \pi'$  then  $\mathcal{T}(\pi) \to^+ \mathcal{T}(\pi')$  ( $\leadsto \mathcal{T}$  is not invariant under reduction). The semantic meaning of  $\mathcal{T}(\pi)$  when  $\pi$  is with cuts is unclear!

For a normal MELL proof-structure (or  $\lambda$ -term)  $\pi$ , we can deal with the elements of  $\mathcal{T}(\pi)$  instead of the elements of  $[\![\pi]\!] \leadsto$  a geometrical representation of the relational interpretation of  $\pi$ .



## Taylor expansion: a bridge between syntax and semantics (2)

Proof of  $[\![\pi]\!]_{\mathrm{inj}/\sim_{\mathfrak{P}\Gamma}} \simeq \mathcal{T}(\pi)$ :

FACT 1:  $\rho$  DiLL<sub>0</sub> proof-structure with conclusion  $\Gamma$ .

- (i) if  $x, x' \in \llbracket \rho \rrbracket_{\text{inj}}$ , then  $x \sim_{\Im \Gamma} x'$ .
- (ii) If  $x \in \llbracket \rho \rrbracket_{\mathrm{inj}}$ ,  $x' \in | \Im \Gamma |_{\mathrm{inj}}$  and  $x \sim_{\Im \Gamma} x'$ , then  $x' \in \llbracket \rho \rrbracket_{\mathrm{inj}}$ .

FACT 2: For  $\rho, \rho'$  cut-free  $\eta$ -expanded DiLL $_0$  proof-structures with conclusion  $\Gamma$ , we have that  $[\![\rho]\!]_{\mathrm{inj}} \cap [\![\rho']\!]_{\mathrm{inj}} \neq \emptyset$  implies that  $\rho = \rho'$  (actually  $\rho \simeq \rho'$ ).

PROOF: The function  $f: \rho \in \mathcal{T}(\pi) \mapsto [x]_{\sim_{\mathfrak{P}\Gamma}}$ , where  $x \in \llbracket \rho_{\mathrm{inj}} \rrbracket$  is bijective. Notice that by Fact  $1 \ [x]_{\sim_{\mathfrak{P}\Gamma}} = \llbracket \rho \rrbracket_{\mathrm{inj}} \subseteq \llbracket \pi \rrbracket_{\mathrm{inj}}$ .

 $\begin{array}{l} f \text{ injective: for } \rho \neq \rho' \text{ and } x \in \llbracket \rho \rrbracket_{\mathrm{inj}}, \, x' \in \llbracket \rho' \rrbracket_{\mathrm{inj}}, \text{ we have } x \not\sim_{\Im\Gamma} x', \\ \text{otherwise by Fact 1(ii) } x, x' \in \llbracket \rho \rrbracket_{\mathrm{inj}} \cap \llbracket \rho' \rrbracket_{\mathrm{inj}} \text{ and by Fact 2 } \rho = \rho'. \\ f \text{ surjective: for } [x]_{\sim_{\Im\Gamma}} \in \llbracket \pi \rrbracket_{\mathrm{inj}/\sim_{\Im\Gamma}} \text{ there is } \rho \in \mathcal{T}(\pi) \text{ s.t. } x \in \llbracket \rho \rrbracket_{\mathrm{inj}} \text{ and then } f(\rho) = [x]_{\sim_{\Im\Gamma}} (= \llbracket \rho \rrbracket_{\mathrm{inj}} \text{ by Fact 1}). \end{array}$